Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A continuum of stress, strength and slip in the Cascadia subduction zone

Abstract

As oceanic lithosphere subducts beneath continental lithosphere it experiences variable degrees of interaction with the overriding plate and movement is accommodated by a continuum of slip modes1. At shallow depths, the plates are locked and movement occurs intermittently as earthquakes. By contrast, at large depths the down-going plate slips into the mantle continually. In the transition zone between locked and stable slip, plate movement is accommodated by slow slip2, which generates tectonic tremor3. Here we use tectonic tremor to infer the location and duration of slow slip in the Cascadia subduction zone from 2006 to 2011. We find that individual slow-slip events are initiated deep on the plate interface and migrate upwards. With decreasing depth, we observe a gradation from small, frequent slip, to large, infrequent slip. These observations fill in the transition zone with a continuum of slip size and periodicity, and indicate that the fault weakens with depth, which we attribute to lower friction. We suggest that stable sliding loads the fault at depth and transfers stress to the base of the transition zone, causing the initiation of slow slip. In a self-similar process, slow slip migrates upwards and ratchets stress up the fault, towards the shallower seismogenic zone. Our conceptual model provides an intuitive understanding of subduction zone dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tremor reference line and swarm size distribution.
Figure 2: Updip tremor migration.
Figure 3: Displacement history profiles and transition zone model.
Figure 4: Slip periodicity trend.

Similar content being viewed by others

References

  1. Peng, Z. & Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geosci. 3, 599–607 (2010).

    Article  Google Scholar 

  2. Dragert, H., Wang, K. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001).

    Article  Google Scholar 

  3. Obara, K. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296, 1679–1681 (2002).

    Article  Google Scholar 

  4. Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 300, 1942–1943 (2003).

    Article  Google Scholar 

  5. Wech, A. G., Creager, K. C. & Melbourne, T. I. Seismic and geodetic constraints on Cascadia slow slip. J. Geophys. Res. 114, B10316 (2009).

    Article  Google Scholar 

  6. Miller, M. M., Melbourne, T., Johnson, D. J. & Sumner, W. Q. Periodic slow earthquakes from the Cascadia subduction zone. Science 295, 2423 (2002).

    Article  Google Scholar 

  7. Dragert, H., Wang, K. & Rogers, G. Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone. Earth Planets Space 56, 1143–1150 (2004).

    Article  Google Scholar 

  8. Mazzotti, S. & Adams, J. Variability of near-term probability for the next great earthquake on the Cascadia subduction zone. Bull. Seismol. Soc. Am. 94, 1954–1959 (2004).

    Article  Google Scholar 

  9. Shelly, D. R., Beroza, G. C. & Ide, S. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446, 305–307 (2007).

    Article  Google Scholar 

  10. Shelly, D. R., Beroza, G. C., Ide, S. & Nakamula, S. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188–191 (2006).

    Article  Google Scholar 

  11. Wech, A. G. & Creager, K. C. Cascadia tremor polarization evidence for plate interface slip. Geophys. Res. Lett. 34, L22306 (2007).

    Article  Google Scholar 

  12. Brown, J. R. et al. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophys. Res. Lett. 36, L19306 (2009).

    Article  Google Scholar 

  13. La Rocca, M. et al. Cascadia tremor located near plate interface constrained by S minus P wave times. Science 323, 620–623 (2009).

    Article  Google Scholar 

  14. Aguiar, A. C., Melbourne, T. I. & Scrivner, C. W. Moment release rate of Cascadia tremor constrained by GPS. J. Geophys. Res. 114, B00A05 (2009).

    Article  Google Scholar 

  15. Ide, S., Beroza, G. C., Shelly, D. R. & Uchide, T. A scaling law for slow earthquakes. Nature 447, 76–79 (2007).

    Article  Google Scholar 

  16. Wech, A. G. & Creager, K. C. Automated detection and location of Cascadia tremor. Geophys. Res. Lett. 35, L20302 (2008).

    Article  Google Scholar 

  17. Obara, K., Tanaka, S., Maeda, T. & Matsuzawa, T. Depth-dependent activity of non-volcanic tremor in southwest Japan. Geophys. Res. Lett. 37, L13306 (2010).

    Article  Google Scholar 

  18. Audet, P., Bostock, M. G., Boyarko, D. C., Brudzinski, M. R. & Allen, R. M. Slab morphology in the Cascadia fore arc and its relation to episodic tremor and slip. J. Geophys. Res. 115, B00A16 (2010).

    Article  Google Scholar 

  19. McCrory, P. A., Blair, J. L., Oppenheimer, D. H. & Walter, S. R. Depth to the Juan de Fuca slab beneath the Cascadia subduction margin: A 3-D model for sorting earthquakes. US Geol. Surv. Dig. Data Ser. 91 (2004).

  20. Linde, A. T. & Silver, P. G. Elevation changes and the great 1960 Chilean earthquake—support for aseismic slip. Geophys. Res. Lett. 16, 1305–1308 (1989).

    Article  Google Scholar 

  21. Matsuzawa, T., Hirose, H., Shibazaki, B. & Obara, K. Modeling short- and long-term slow slip events in the seismic cycles of large subduction earthquakes. J. Geophys. Res. 115, B12301 (2010).

    Article  Google Scholar 

  22. Liu, Y. J. & Rice, J. R. Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia. J. Geophys. Res. 114, B09407 (2009).

    Article  Google Scholar 

  23. Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).

    Article  Google Scholar 

  24. Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. 100, 13045–13064 (1995).

    Article  Google Scholar 

  25. Ide, S. Striations, duration, migration and tidal response in deep tremor. Nature 466, 356-U105 (2010).

    Article  Google Scholar 

  26. Segall, P., Rubin, A. M., Bradley, A. M. & Rice, J. R. Dilatant strengthening as a mechanism for slow slip events. J. Geophys. Res. 115, B12305 (2010).

    Article  Google Scholar 

  27. Nakata, R., Suda, N. & Tsuruoka, H. Non-volcanic tremor resulting from the combined effect of Earth tides and slow slip events. Nature Geosci. 1, 676–678 (2008).

    Article  Google Scholar 

  28. Meade, B. J. & Loveless, J. P. Predicting the geodetic signature of M−W>=8 slow slip events. Geophys. Res. Lett. 36, L01306 (2009).

    Article  Google Scholar 

  29. Wech, A. G., Creager, K. C., Houston, H. & Vidale, J. E. An earthquake-like magnitude-frequency distribution of slow slip in northern Cascadia. Geophys. Res. Lett. 37, L22310 (2010).

    Article  Google Scholar 

  30. Brudzinski, M. R. et al. Non-volcanic tremor along the Oaxaca segment of the Middle America subduction zone. J. Geophys. Res. 115, B00A23 (2010).

    Article  Google Scholar 

  31. Hirose, H. & Obara, K. Repeating short- and long-term slow slip events with deep tremor activity around the Bungo channel region, southwest Japan. Earth Planets Space 57, 961–972 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the USGS G09AP00024, G10AP00033 and the National Science Foundation EAR-0545441.

Author information

Authors and Affiliations

Authors

Contributions

A.G.W. performed tremor detection and depth analysis. K.C.C. developed methods for cataloguing tremor into swarms. A.G.W. and K.C.C. collaboratively provided interpretation.

Corresponding author

Correspondence to Aaron G. Wech.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wech, A., Creager, K. A continuum of stress, strength and slip in the Cascadia subduction zone. Nature Geosci 4, 624–628 (2011). https://doi.org/10.1038/ngeo1215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing