Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Earliest rock fabric formed in the Solar System preserved in a chondrule rim

Subjects

Abstract

Rock fabrics—the preferred orientation of grains—provide a window into the history of rock formation, deformation and compaction. Chondritic meteorites are among the oldest materials in the Solar System1 and their fabrics should record a range of processes occurring in the nebula and in asteroids. However, owing to abundant fine-grained material, chondrites have largely resisted traditional in situ fabric analysis. Here we use high-resolution electron backscatter diffraction to map the orientation of submicrometre grains in the Allende CV carbonaceous chondrite. We look at the fine-grained rims surrounding the chondrules—spherical grains cooled from molten droplets before accretion in the meteorite—as well as the matrix material between the chondrules. Although the matrix exhibits a bulk uniaxial fabric indicative of a compressive event in the parent asteroid, we find that the chondrule rims preserve a spherically symmetric fabric centred on the chondrule. We define a method to quantitatively relate fabric intensity to net compression, and reconstruct an initial rim porosity of 70–80%. Our calculations provide meteoritic evidence that the first solids formed in the Solar System accreted with high porosity, similar to modelling and laboratory estimates2,3. We conclude that the chondrule rim textures formed in a nebula setting and may therefore represent the first rock fabric in the Solar System.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron backscatter diffraction (EBSD) maps of an Allende barred olivine chondrule, fine grained rim (FGR) areas that surround it, and matrix.

Similar content being viewed by others

References

  1. Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. Lead isotopic ages of chondrules and calcium–aluminium-rich inclusions. Science 297, 1678–1683 (2002).

    Article  Google Scholar 

  2. Blum, J. & Schräpler, R. Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. Phys. Rev. Lett. 93, 115503 (2004).

    Article  Google Scholar 

  3. Ormel, C. W., Cuzzi, J. N. & Tielens, A. G. G. M. Co-accretion of chondrules and dust in the solar nebula. Astrophys. J. 679, 1588–1610 (2008).

    Article  Google Scholar 

  4. Paque, J. M. & Cuzzi, J. N. Physical characteristics of chondrules and rims, and aerodynamic sorting in the solar nebula. Lunar Planet. Sci. Conf. XXVIII, 71–72 (1997).

  5. Rubin, A. E. Coarse-grained chondrule rims in type 3 chondrites. Geochim. Cosmochim. Acta 48, 1779–1789 (1984).

    Article  Google Scholar 

  6. Tomeoka, K. & Tanimura, I. Phyllosilicate-rich chondrule rims in the Vigarano CV3 chondrite: Evidence for parent-body processes. Geochim. Cosmochim. Acta 64, 1971–1988 (2000).

    Article  Google Scholar 

  7. Trigo-Rodriguez, J. M., Rubin, A. E. & Wasson, J. T. Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites. Geochim. Cosmochim. Acta 70, 1271–1290 (2006).

    Article  Google Scholar 

  8. Sugiura, N., Matsui, T. & Strangway, D. W. On the natural remanent magnetization in Allende meteorite. Lunar Planet. Sci. 16, 831–832 (1985).

    Google Scholar 

  9. Sneyd, D. S., McSween, H. Y. Jr, Sugiura, N., Strangway, D. W. & Nord, G. L. Jr Origin of petrofabrics and magnetic anisotropy in ordinary chondrites. Meteoritics 23, 139–149 (1988).

    Article  Google Scholar 

  10. Morden, S. J. & Collinson, D. W. The implications of the magnetism of ordinary chondrite meteorites. Earth Planet. Sci. Lett. 109, 185–204 (1992).

    Article  Google Scholar 

  11. Dodd, R. T. Preferred orientation of chondrules in chondrites. Icarus 4, 308–316 (1965).

    Article  Google Scholar 

  12. Martin, P. M. & Mills, A. A. Preferred chondrule orientations in meteorites. Earth Planet. Sci. Lett. 51, 18–25 (1980).

    Article  Google Scholar 

  13. Cain, P. M., McSween, H. Y. Jr & Woodward, N. B. Structural deformation of the Leoville chondrite. Earth Planet. Sci. Lett. 77, 165–176 (1986).

    Article  Google Scholar 

  14. Watt, L. E., Bland, P. A., Prior, D. J. & Russell, S. S. Fabric analysis of Allende matrix using EBSD. Meteorit. Planet. Sci. 41, 989–1001 (2006).

    Article  Google Scholar 

  15. Ramsay, J. G. & Huber, M. I. The Techniques of Modern Structural Geology. Volume 1: Strain Analysis (Academic, 1983).

    Google Scholar 

  16. Harvey, P. K. & Laxton, R. R. The estimate of finite strain from the orientation distribution of passively deformed linear markers: Eigenvalue relationships. Tectonophysics 70, 285–307 (1980).

    Article  Google Scholar 

  17. Consolmagno, G. J., Britt, D. T. & Macke, R. J. What density and porosity tell us about meteorites. Lunar Planet. Sci. Conf. XXXIX, #1582 on CD-ROM (2008).

  18. McSween, H. Y. Jr Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochim. Cosmochim. Acta 41, 1777–1790 (1977).

    Article  Google Scholar 

  19. Ebel, D. S., Leftwich, K., Brunner, C. E. & Weisberg, M. K. Abundance and size distribution of inclusions in CV3 chondrites by X-ray image analysis. Lunar Planet. Sci. Conf. XXXX, #2065 on CD-ROM (2009).

  20. Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, 1989).

    Google Scholar 

  21. Krot, A. N., Petaev, M. I. & Bland, P. A. Multiple formation mechanisms of ferrous olivine in CV3 carbonaceous chondrites during fluid-assisted metamorphism. Antarctic Meteorite Res. 17, 154–172 (2004).

    Google Scholar 

  22. Dominik, C. & Tielens, A. G. G. M. The physics of dust coagulation and the structure of dust aggregates in space. Astrophys. J. 480, 647–673 (1997).

    Article  Google Scholar 

  23. Desch, S. J. & Connolly, H. C. Jr A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183–207 (2002).

    Article  Google Scholar 

  24. Hood, L. L., Ciesla, F. J. & Weidenschilling, S. J. in Chondrites and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) 873–882 (ASP Conference Series, Vol. 341, Astronomical Society of the Pacific, 2005).

    Google Scholar 

  25. Ciesla, F. J. Chondrule collisions in shock waves. Meteorit. Planet. Sci. 41, 1347–1359 (2006).

    Article  Google Scholar 

  26. Prior, D. J., Mariani, E. & Wheeler, J. in Electron Backscatter Diffraction in Materials Science 2nd edn (eds Schwartz, A. J., Kumar, M., Adams, B. L. & Field, D. P.) 345–357 (Springer, 2009).

    Book  Google Scholar 

  27. Owens, W. H. Strain modification of angular density distributions. Tectonophysics 16, 249–261 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Ciesla and J. Cuzzi for valuable discussions. This work was supported by the Royal Society.

Author information

Authors and Affiliations

Authors

Contributions

P.A.B. designed the project; P.A.B., L.E.H., D.J.P. and R.M.H. collected and analysed the data; J.W. performed strain calculations; P.A.B. wrote the manuscript; K.A.D. contributed to Supplementary Information; L.E.H., D.J.P., J.W. and R.M.H. edited the manuscript.

Corresponding author

Correspondence to Philip A. Bland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 404 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bland, P., Howard, L., Prior, D. et al. Earliest rock fabric formed in the Solar System preserved in a chondrule rim. Nature Geosci 4, 244–247 (2011). https://doi.org/10.1038/ngeo1120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing