Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Metal flux from hydrothermal vents increased by organic complexation

Abstract

Hydrothermal vents in the sea floor release large volumes of hot, metal-rich fluids into the deep ocean. Until recently, it was assumed that most of the metal released was incorporated into sulphide or oxide minerals, and that the net flux of most hydrothermally derived metals to the open ocean was negligible. However, mounting evidence suggests that organic compounds bind to and stabilize metals in hydrothermal fluids, increasing trace-metal flux to the global ocean. In situ measurements reveal that hydrothermally derived chromium, copper and iron bind to organic molecules on mixing with sea water. Geochemical model simulations based on data from two hydrothermal vent sites suggest that complexation significantly increases metal flux from hydrothermal systems. According to these simulations, hydrothermal fluids could account for 9% and 14% of the deep-ocean dissolved iron and copper budgets respectively. A similar role for organic complexation can be inferred for the hydrothermal fluxes of other metals, such as manganese and zinc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processes in the hydrothermal fluid–seawater mixing zone.

Similar content being viewed by others

References

  1. Hannington, M. D., de Ronde, C. E. J. & Petersen, S. in Economic Geology: One Hundredth Anniversary Volume: 1905–2005 (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. D.) 111–141 (Society of Economic Geologists, 2005).

    Google Scholar 

  2. Koschinsky, A. et al. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5 degrees S on the Mid-Atlantic Ridge. Geology 36, 615–618 (2008).

    Article  Google Scholar 

  3. Haase, K. M. et al. Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliput field at 9°33′S. Mar. Geol. 266, 52–64 (2009).

    Article  Google Scholar 

  4. Von Damm, K. L. & Lilley, M. D. in Subseafloor Biosphere at Mid-Ocean Ranges, Vol. 144 (eds Wilcock, W. S. D. et al.) 245–268 (American Geophysical Union, 2004).

    Book  Google Scholar 

  5. Schmidt, K. et al. Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): Constraints on fluid origin in a heterogeneous lithosphere setting. Chem. Geol. 280, 12–18 (2010).

    Google Scholar 

  6. Edmond, J. M. et al. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean - Galapagos Data. Earth Planet. Sci. Lett. 46, 1–18 (1979).

    Article  Google Scholar 

  7. Elderfield, H. & Schulz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  Google Scholar 

  8. Lilley, M. D., Feely, R. A. & Trefry, J. H. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 369–391 (Geophysical Monograph 91, American Geophysical Union, 1995).

    Google Scholar 

  9. Byrne, R. H. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochem. Trans. 3, 11–16 (2002).

    Article  Google Scholar 

  10. Luther, G. W. III, Rozan, T. F., Witter, A. & Lewis, B. Metal-organic complexation in the marine environment. Geochem. Trans. 2, 65 (2001).

    Article  Google Scholar 

  11. Morel, F. M. M. & Price, I. G. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).

    Article  Google Scholar 

  12. Loaëc, M., Olier, R & Guezennec, J. Chelating properties of bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohyd. Polym. 35, 65–70 (1998).

    Article  Google Scholar 

  13. Sander, S. & Koschinsky, A. Onboard-ship redox speciation of chromium in diffuse hydrothermal fluids from the North Fiji Basin. Mar. Chem. 71, 83–102 (2000).

    Article  Google Scholar 

  14. Sander, S. G., Koschinsky, A., Massoth, G. J., Stott, M. & Hunter, K. A. Organic complexation of copper in deep-sea hydrothermal vent systems. Environ. Chem. 4, 81–89 (2007).

    Article  Google Scholar 

  15. Bennett, S. A. et al. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth Planet. Sci. Lett. 270, 157–167 (2008).

    Article  Google Scholar 

  16. Sarradin, P. M. et al. Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37 degrees N). Sci. Total Environ. 407, 869–878 (2009).

    Article  Google Scholar 

  17. Toner, B. M. et al. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geosci. 2, 197–201 (2009).

    Article  Google Scholar 

  18. Von Damm, K. L. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 222–247 (Geophysical Monograph 91, American Geophysical Union, 1995).

  19. Ussher, S. J., Achterberg, E. P. & Worsfold, P. J. Marine biogeochemistry of iron. Environ. Chem. 1, 67–80 (2004).

    Article  Google Scholar 

  20. Moffett, J. W. & Dupont, C. Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea. Deep-Sea Res. I 54, 586–595 (2007).

    Article  Google Scholar 

  21. Liu, X. & Millero, F. J. The solubility of iron in seawater. Mar. Chem. 77, 43–54 (2002).

    Article  Google Scholar 

  22. Boyd, P. W., Ibisanmi, E., Sander, S. G., Hunter, K. A. & Jackson, G. A. Remineralization of upper ocean particles: Implications for iron biogeochemistry. Limnol. Oceanogr. 55, 1271–1288 (2010).

    Article  Google Scholar 

  23. Rue, E. L. & Bruland, K. W. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 50, 117–138 (1995).

    Article  Google Scholar 

  24. Bergquist, B. A. & Boyle, E. A. Dissolved iron in the tropical and subtropical Atlantic Ocean. Glob. Biogeochem. Cycles 20, GB1015 (2006).

    Article  Google Scholar 

  25. Coale, K. H. & Bruland, K. W. Copper complexation in the northeast Pacific. Limnol. Oceanogr. 33, 1084–1101 (1988).

    Article  Google Scholar 

  26. Douville, E. et al. The Rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 184, 37–48 (2002).

    Article  Google Scholar 

  27. Tagliabue, A. et al. Hydrothermal contribution to the oceanic dissolved iron inventory. Nature Geosci. 3, 252–256 (2010).

    Article  Google Scholar 

  28. Severmann, S. et al. The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36 degrees 14′ N. Earth Planet. Sci. Lett. 225, 63–76 (2004).

    Article  Google Scholar 

  29. Chu, N-C. et al. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time. Earth Planet. Sci. Lett. 245, 202–217 (2006).

    Article  Google Scholar 

  30. Statham, P. J., German, C. R. & Connelly, D. P. Iron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites Indian Ocean. Earth Planet. Sci. Lett 263, 588–596 (2005).

    Article  Google Scholar 

  31. Luther, G. W. III et al. Chemical speciation drives hydrothermal vent ecology. Nature 410, 813–816 (2001).

    Article  Google Scholar 

  32. Hsu-Kim, H., Mullaugh, K. M., Tsang, J. T., Yucel, M. & Luther, G. W. III Formation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophs. Geochem. Trans. 9, 6 (2008).

    Article  Google Scholar 

  33. Mandernack, K. W. & Tebo, B. M. Manganese scavanging and oxidation at hydrothermal vents and in vent plumes. Geochim. Cosmochim. Acta 57, 3907–3923 (1993).

    Article  Google Scholar 

  34. Trouwborst, R. E., Clement, B. G., Tebo, B. M., Glazer, B. T. & Luther, G. W. III Soluble Mn(III) in suboxic zones. Science 313, 1955–1957 (2006).

    Article  Google Scholar 

  35. Bruland, K. W. Complexation of zinc by natural organic ligands in the central north Pacific. Limnol. Oceanogr. 32, 269–285 (1989).

    Article  Google Scholar 

  36. Lang, S. Q., Butterfield, D. A., Lilley, M. D., Johnson, H. l. P. & Hedges, J. I. Dissolved organic carbon in ridge-axes and ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta 70, 3830–3842 (2006).

    Article  Google Scholar 

  37. Holm, N. G. & Charlou, J. L. Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 191, 1–8 (2001).

    Article  Google Scholar 

  38. Konn, C. et al. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chem. Geol. 258, 299–314 (2009).

    Article  Google Scholar 

  39. Lang, S. Q., Butterfield, D. A., Schulte, M., Kelley, D. S. & Lilley, M. D. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 74, 941–952 (2010).

    Article  Google Scholar 

  40. Klevenz, V., Sumoondur, A., Ostertag-Henning, C. & Koschinsky, A. Concentrations and distributions of dissolved amino acids in fluids from Mid-Atlantic Ridge hydrothermal vents. Geochem. J. 44, 387–397 (2010).

    Article  Google Scholar 

  41. Dupont, C. L., Moffett, J. W., Bidigare, R. R. & Ahner, B. A. Distributions of dissolved and particulate biogenic thiols in the subartic Pacific Ocean. Deep-Sea Res. I 53, 1961–1974 (2006).

    Article  Google Scholar 

  42. Schulte, M. D. & Rogers, K. L. Thiols in hydrothermal solutions: standard partial molal properties and their role in the organic geochemistry of hydrothermal environments. Geochim. Cosmochim. Acta 68, 1087–1097 (2004).

    Article  Google Scholar 

  43. Mawji, E. et al. Hydroxamate siderophores: Occurrence and importance in the Atlantic Ocean. Environ. Sci. Technol. 42, 8675–8680 (2008).

    Article  Google Scholar 

  44. Hassler, C. S., Schoemann, V., Nichols, C. M., Butler, E. C. V. & Boyd, P. W. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. P. Natl Acad. Sci. USA 108, 1076–1081 (2011).

    Article  Google Scholar 

  45. Dittmar, T. & Paeng, J. A heat-induced molecular signature in marine dissolved organic matter. Nature Geosci. 2, 175–179 (2009).

    Article  Google Scholar 

  46. Rona, P. A., Klinkhammer, G., Nelson, T. A., Trefry, J. H. & Elderfield, H. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature 321, 33–37 (1986).

    Article  Google Scholar 

  47. Haase, K. M. et al. Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 8, Q11002 (2007).

    Article  Google Scholar 

  48. Kelley, D. S. et al. A serpentinite-hosted ecosystem: The Lost City hydrothermal field. Science 307, 1428–1434 (2005).

    Article  Google Scholar 

  49. Desbruyères, D. et al. A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440, 201–216 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The background work for this article was embedded in the Special Priority Program SPP 1144 'From Mantle to Ocean: Energy, Material and Life Cycles at Spreading Axes' of the German Science Foundation (DFG). The preparation of this article was supported by the BMBF-IB grant NZL 09/008 and ISAT fund FRG09-21 and FRG10-26. This is SPP 1144 publication no. 56. We thank Eike Breitbarth and Katja Schmidt for valuable discussion at various stages of the manuscript and Lisa Bucke for the preparation of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

A.K. provided hydrothermal background information including Box 1. S.G.S. carried out the geochemical modelling (Box 2, Supplementary Information) and discussion of organic complexation. Both authors contributed equally to the preparation of the manuscript and the discussion of the results.

Corresponding author

Correspondence to Sylvia G. Sander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 610 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sander, S., Koschinsky, A. Metal flux from hydrothermal vents increased by organic complexation. Nature Geosci 4, 145–150 (2011). https://doi.org/10.1038/ngeo1088

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1088

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology