Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping a gene for familial situs abnormalities to human chromosome Xq24-q27.1

Abstract

Ambiguous abdominal situs, asplenia/polysplenia and severe cardiac malformations characterize heterotaxy in humans. These anomalies result from the inability of the developing embryo to establish normal left–right asymmetry. We have studied an interesting family in which the heterotaxy phenotype segregates as an X–linked recessive trait. In order to map the heterotaxy locus (HTX), we have analysed 39 family members using highly–polymorphic microsatellite markers from the X chromosome. One of these markers, DXS994, shows no recombination with the disease locus in 20 informative meioses. Linkage analysis results in a maximum lod score of 6.37. Current genetic and physical mapping data assign the order of loci in Xq24–q27.1 as cen–DXS1001–(DXS994, HTX)–DXS984–tel. These results establish the first mapping assignment of situs abnormalities in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKusick, V.A., Francomano, C.A. & Antonarakis, S.E. in Mendelian Inheritance in Man. Catalogs of Autosomal Dominant, Autosomal Recessive, and X-Linked Phenotypes (The Johns Hopkins University Press, Baltimore, 1992).

    Google Scholar 

  2. Jones, K.L. in Smith's Recognizable Patterns of Human Malformation 4th edn (ed. W. B. Saunders Staff) 543–544 (Saunders, Philadelphia, Pennsylvania, 1988).

    Google Scholar 

  3. Winer-Muram, H.T. & Tonkin, I.L.D. The spectrum of heterotaxic syndromes. Radiol. Clin. North Am. 27, 1147–1170 (1989).

    CAS  PubMed  Google Scholar 

  4. Van Praagh, R., Santini, F. & Sanders, S.P. in Nada's Pediatric Cardiology (eds Nadas, A.S. & Fyler, D.C.) 1–41 (Mosby Yearbook, Philadelphia, 1992).

    Google Scholar 

  5. Burn, J. in Biological Asymmetry and Handedness (eds Bock, G.R. & Marsh, J.) 282–299 (Wiley, Chichester, 1991).

    Google Scholar 

  6. Niikawa, N., Kohsaka, S., Mizumoto, M., Hamada, I. & Kajii, T. Familial clustering of situs inversus totalis and asplenia and polysplenia syndromes. Am. J. med. Genet. 16, 43–47 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Mathias, R.S., Lacro, R.V. & Jones, K.L. X-linked laterality sequence: situs inversus, complex cardiac defects, splenic defects. Am. J. med. Genet. 28, 111–116 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Layton, W.M. in Morphogenesis and Malformation of the Cardiovascular System (eds Rosenquist, G. & Bergsma, D.) 277–293 (Alan R. Liss, New York, 1978).

    Google Scholar 

  10. Icardo, J.M. & Sanchez de Vega, M.J. Spectrum of heart malformations in mice with situs solitus, situs inversus, and associated visceral heterotaxy. Circulation 84, 2547–2558 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Brueckner, M., D'Eustachio, P. & Horwich, A.L. Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera. Proc. natn. Acad. Sci. U.S.A. 86, 5035–5038 (1989).

    Article  CAS  Google Scholar 

  12. Hanzlik, A.J. et al. The murine situs inversus viscerum (iv) gene responsible for visceral asymmetry is linked tightly to the Igh-C cluster on chromosome 12. Genomics 7, 389–393 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. McGrath, J., Horwich, A.L. & Brueckner, M. Duplication/deficiency mapping of situs inversus viscerum (iv), a gene that determines left-right asymmetry in the mouse. Genomics 14, 643–648 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Yokoyama, T. et al. Reversal of left-right asymmetry: a situs inversus mutation. Science 260, 679–682 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Afzelius, B.A. & Mossberg, B. in The Metabolic Basis of Inherited Disease (ed. Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2739–2750 (McGraw-Hill, New York, 1989).

    Google Scholar 

  16. Sturgess, J.M., Thompson, M.W., Czegledy-Nagy, E. & Turner, J.A.P. Genetic aspects of immotile cilia syndrome. Am. J. med. Genet. 25, 149–160 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Moreno, A. & Murphy, E.A. Inheritance of Kartagener syndrome. Am. J. med. Genet. 8, 305 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Schlessinger, D., Mandel, J.-L., Monaco, A.P., Nelson, D.L. & Willard, H.F. X chromosome workshop (XCW4) report. Cytogenet. Cell Genet. (in the press).

  19. Wyandt, H.E., Grierson, H.L., Sanger, W.G., Skare, J.C. & Milunsky, A. Chromosome deletion of Xq25 in an individual with X-linked lymphoproliferative disease. Am. J. med. Genet. 33, 426–430 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Skare, J. et al. Characterization of three overlapping deletions causing X-linked lymphoproliferative disease. Genomics 16, 254–255 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Villa, A. et al. Isolation of a zinc finger motif (ZNF75) mapping on chromosome Xq26. Genomics 13, 1231–1236 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Okabe, I. et al. Cloning of human and bovine homologs of SNF2/SWI2: a global activator of transcription in yeast S.cerevisiae. Nucl. Acids Res. 20, 4649–4655 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koken, M.H. et al. Localization of two human homologs, HHR6A and HHR6B, of the yeast DNA repair gene RAD6 to chromosomes Xq24-q25 and 5q23-q31. Genomics 12, 447–453 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Brown, N.A., Hoyle, C.I., McCarthy, A. & Wolpert, L. The development of asymmetry: the sidedness of drug-induced limb abnormalities is reversed in situs inversus mice. Development 107, 637–642 (1989).

    CAS  PubMed  Google Scholar 

  25. Wright, D.K. in PCR Protocols: A Guide to Methods and Applications (eds Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J.) 153–158 (Academic, San Diego, California, 1990).

    Google Scholar 

  26. Ott, J. Computer-simulation methods in human linkage analysis. Proc. natn. Acad. Sci. U.S.A. 86, 4175–4178 (1989).

    Article  CAS  Google Scholar 

  27. Weeks, D.E., Ott, J. & Lathrop, G.M. SLINK: a general simulation program for linkage analysis. Am. J. hum. Genet. 47 (Suppl.), A204 (1990).

    Google Scholar 

  28. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casey, B., Devoto, M., Jones, K. et al. Mapping a gene for familial situs abnormalities to human chromosome Xq24-q27.1. Nat Genet 5, 403–407 (1993). https://doi.org/10.1038/ng1293-403

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1293-403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing