Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2

Abstract

Tricuspid atresia (TA) is a common form of congenital heart disease, accounting for 1–3% of congenital cardiac disorders1. TA is characterized by the congenital agenesis of the tricuspid valve connecting the right atrium to the right ventricle and both an atrial septal defect (ASD) and a ventricular septal defect2 (VSD). Some patients also have pulmonic stenosis, persistence of a left-sided superior vena cava or transposition of the great arteries. Most cases of TA are sporadic, but familial occurrences with disease in multiple siblings have been reported3,4,5. Gata4 is a zinc-finger transcription factor with a role in early cardiac development. Gata4-deficient mice fail to form a ventral heart tube and die of circulatory failure at embryonic day (E) 8.5 (refs 6,7). Zfpm2 (also known as Fog-2) is a multi-zinc-finger protein that is co-expressed with Gata4 in the developing heart beginning at E8.5 (refs 810). Zfpm2 interacts specifically with the N-terminal zinc finger of Gata4 and represses Gata4-dependent transcription8,9,10. Here we use targeted mutagenesis to explore the role of Zfpm2 in normal cardiac development. Zfpm2-deficient mice died of congestive heart failure at E13 with a syndrome of tricuspid atresia that includes an absent tricuspid valve, a large ASD, a VSD, an elongated left ventricular outflow tract, rightward displacement of the aortic valve and pulmonic stenosis. These mice also display hypoplasia of the compact zone of the left ventricle. Our findings indicate the importance of Zfpm2 in the normal looping and septation of the heart and suggest a genetic basis for the syndrome of tricuspid atresia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of Zfpm2.
Figure 2: Phenotypic analysis of Zfpm2−/− mice.
Figure 3: Histological analysis of Zfpm2−/− embryonic heart. Sections from E12.5–13.5 wild-type and Zfpm2−/− embryos stained with haematoxylin and eosin (ah).
Figure 4: In situ hybridization analysis of Zfpm2−/− heart.

Similar content being viewed by others

References

  1. Sade, R.M. & Fyfe, D.A. Tricuspid atresia: current concepts in diagnosis and treatment. Pediatr. Clin. North Am. 37, 151–169 (1990).

    Article  CAS  Google Scholar 

  2. Rao, P.S. A unified classification for tricuspid atresia. Am. Heart J. 99, 799–804 (1980).

    Article  CAS  Google Scholar 

  3. Lin, A.E. & Rosti, L. Tricuspid atresia in sibs. J. Med. Genet. 35, 1055–1056 (1998).

    Article  CAS  Google Scholar 

  4. Kumar, A., Victorica, B.E., Gessner, I.H. & Alexander, J.A. Tricuspid atresia and annular hypoplasia: report of a familial occurrence. Pediatr. Cardiol. 15, 201–203 (1994).

    Article  CAS  Google Scholar 

  5. Bonnet, D. et al. Tricuspid atresia and conotruncal malformations in five families. J. Med. Genet. 36, 349–350 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Molkentin, J.D., Lin, Q., Duncan, S.A. & Olson, E.N. Requirement of the transcription factor Gata4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061–1072 (1997).

    Article  CAS  Google Scholar 

  7. Kuo, C.T. et al. Gata4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11, 1048–1060 (1997).

    Article  CAS  Google Scholar 

  8. Lu, J.R. et al. FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors. Mol. Cell. Biol. 19, 4495–4502 (1999).

    Article  CAS  Google Scholar 

  9. Svensson, E.C., Tufts, R.L., Polk, C.E. & Leiden, J.M. Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc. Natl Acad. Sci. USA 96, 956–961 (1999).

    Article  CAS  Google Scholar 

  10. Tevosian, S.G. et al. FOG-2: a novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped. Proc. Natl Acad. Sci. USA 96, 950–955 (1999).

    Article  CAS  Google Scholar 

  11. Kuo, C.T. et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11, 2996–3006 (1997).

    Article  CAS  Google Scholar 

  12. Svensson, E., Huggins, G., Dardik, F., Polk, C. & Leiden, J. A functionally conserved N-terminal domain of the friend of GATA 2 (FOG-2) protein represses Gata4-dependent transcription. J. Biol. Chem. (in press).

  13. Lamers, W.H., Viragh, S., Wessels, A., Moorman, A.F. & Anderson, R.H. Formation of the tricuspid valve in the human heart. Circulation 91, 111–121 (1995).

    Article  CAS  Google Scholar 

  14. Lyons, I. et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9, 1654–1666 (1995).

    Article  CAS  Google Scholar 

  15. Biben, C. & Harvey, R.P. Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 11, 1357–1369 (1997).

    Article  CAS  Google Scholar 

  16. Srivastava, D. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genet. 16, 154–160 (1997).

    Article  CAS  Google Scholar 

  17. Ranger, A.M. et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392, 186–190 (1998).

    Article  CAS  Google Scholar 

  18. de la Pompa, J.L. et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392, 182–186 (1998).

    Article  CAS  Google Scholar 

  19. Webb, S., Brown, N.A. & Anderson, R.H. Formation of the atrioventricular septal structures in the normal mouse. Circulation Res. 82, 645–656 (1998).

    Article  CAS  Google Scholar 

  20. Webb, S., Anderson, R.H., Lamers, W.H. & Brown, N.A. Mechanisms of deficient cardiac septation in the mouse with trisomy 16. Circ. Res. 84, 897–905 (1999).

    Article  CAS  Google Scholar 

  21. Lee, R.Y., Luo, J., Evans, R.M., Giguere, V. & Sucov, H.M. Compartment-selective sensitivity of cardiovascular morphogenesis to combinations of retinoic acid receptor gene mutations. Circ. Res. 80, 757–764 (1997).

    Article  CAS  Google Scholar 

  22. Anderson, R.H., Webb, S. & Brown, N.A. The mouse with trisomy 16 as a model of human hearts with common atrioventricular junction. Cardiovasc. Res. 39, 155–164 (1998).

    Article  CAS  Google Scholar 

  23. Webb, S., Brown, N.A. & Anderson, R.H. Cardiac morphology at late fetal stages in the mouse with trisomy 16: consequences for different formation of the atrioventricular junction when compared to humans with trisomy 21. Cardiovasc. Res. 34, 515–524 (1997).

    Article  CAS  Google Scholar 

  24. Gelb, B.D., Towbin, J.A., McCabe, E.R. & Sujansky, E. San Luis Valley recombinant chromosome 8 and tetralogy of Fallot: a review of chromosome 8 anomalies and congenital heart disease. Am. J. Med. Genet. 40, 471–476 (1991).

    Article  CAS  Google Scholar 

  25. Sujansky, E. et al. Natural history of the recombinant (8) syndrome. Am. J. Med. Genet. 47, 512–525 (1993).

    Article  CAS  Google Scholar 

  26. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  27. Soudais, C. et al. Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development 121, 3877–3888 (1995).

    CAS  PubMed  Google Scholar 

  28. Morrisey, E.E., Ip, H.S., Tang, Z., Lu, M.M. & Parmacek, M.S. GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev. Biol. 183, 21–36 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Lis for help with the preparation of illustrations; D. Zhang for help with the preparation of histological sections; and R. Van Praagh for help with the review of histological sections from Zfpm2−/− mice. This work was supported in part by grants from the NIH to J.M.L. (HL 54592) and G.S.H. (HL 03667).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Leiden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, E., Huggins, G., Lin, H. et al. A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nat Genet 25, 353–356 (2000). https://doi.org/10.1038/77146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing