Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A radiation hybrid map of the rat genome containing 5,255 markers

Abstract

A whole-genome radiation hybrid (RH) panel was used to construct a high-resolution map of the rat genome based on microsatellite and gene markers. These include 3,019 new microsatellite markers described here for the first time and 1,714 microsatellite markers with known genetic locations, allowing comparison and integration of maps from different sources. A robust RH framework map containing 1,030 positions ordered with odds of at least 1,000:1 has been defined as a tool for mapping these markers, and for future RH mapping in the rat. More than 500 genes which have been mapped in mouse and/or human were localized with respect to the rat RH framework, allowing the construction of detailed rat-mouse and rat-human comparative maps and illustrating the power of the RH approach for comparative mapping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: (facing page) RH and genetic maps of RNO1.
Figure 2: (preceding pages) Comparative map for rat homologous mouse and human genes.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rapp, J.P., Wang, S.M. & Dene, H.A. A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 243, 542–544 (1989).

    Article  CAS  Google Scholar 

  2. Hilbert, P. et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353, 521–529 (1991).

    Article  CAS  Google Scholar 

  3. Jacob, H.J. et al. Genetic mapping of a major gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67 , 213–224 (1991).

    Article  CAS  Google Scholar 

  4. Bottger, A. et al. Quantitative trait loci influencing cholesterol and phosholipid phenotypes map to chromosomes that contain genes regulating blood pressure in the spontaneously hypertensive rat. J. Clin. Invest. 98, 856–862 (1996).

    Article  CAS  Google Scholar 

  5. Galli, J. et al. Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nature Genet. 12, 31– 37 (1996).

    Article  CAS  Google Scholar 

  6. Gauguier, D. et al. Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nature Genet. 12, 38–43 (1996).

    Article  CAS  Google Scholar 

  7. Brown, D.M., Provoost, A.P., Daly, M.J., Lander, E.S. & Jacob, H.J. Renal disease susceptibility and hypertension are under independent genetic control in the fawn-hooded rat. Nature Genet. 12, 44–51 (1996).

    Article  CAS  Google Scholar 

  8. Jacob, H.J. et al. Genetic dissection of autoimmune type I diabetes in the BB rat. Nature Genet. 2, 56– 60 (1992).

    Article  CAS  Google Scholar 

  9. Kermarrec, N. et al. Serum IgE concentration and other immune manifestations of treatment with gold salts are linked to the MHC and IL4 regions in the rat. Genomics 31, 111–114 (1996).

    Article  CAS  Google Scholar 

  10. Remmers, E.F. et al. A genome scan localizes five non-MHC loci controlling collagen-induced arthritis in rats. Nature Genet. 14, 82– 85 (1996).

    Article  CAS  Google Scholar 

  11. Moisan, M.-P. et al. A major quantitative trait locus influences hyperactivity in the rat. Nature Genet. 14, 471– 473 (1996).

    Article  CAS  Google Scholar 

  12. James, M.R. & Lindpaintner, K. Why map the rat? Trends Genet. 13, 171–173 (1997).

    Article  CAS  Google Scholar 

  13. Jacob, H.J. et al. A genetic linkage map of the laboratory rat, Rattus norvegicus . Nature Genet. 9, 63– 69 (1995).

    Article  CAS  Google Scholar 

  14. Bihoreau, M.-T. et al. A linkage map of the rat genome derived from three F2 crosses. Genome Res. 7, 434–440 (1997).

    Article  CAS  Google Scholar 

  15. Brown, D.M. et al. An integrated genetic linkage map of the laboratory rat. Mamm. Genome 9, 521–530 (1998).

    Article  CAS  Google Scholar 

  16. Cai, L. et al. Construction and characterization of a 10-genome equivalent yeast artificial chromosome library for the laboratory rat. Genomics 39, 385–392 ( 1997).

    Article  CAS  Google Scholar 

  17. Woon, P.Y. et al. Construction and characterization of a 10-fold genome equivalent rat P1-derived artificial chromosome library. Genomics 50, 306–316 (1998).

    Article  CAS  Google Scholar 

  18. Kanemoto, N. et al. Genetic dissection of "OLETF", a rat model for non-insulin-dependent diabetes mellitus. Mamm. Genome 9, 419– 425 (1998).

    Article  CAS  Google Scholar 

  19. Nadeau, J.H. & Taylor, B.A. Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl Acad. Sci. USA 81, 814–818 ( 1984).

    Article  CAS  Google Scholar 

  20. Nadeau, J.H. & Sankoff, D. The lengths of undiscovered conserved segments in comparative maps. Mamm. Genome 9, 491–495 (1998).

    Article  CAS  Google Scholar 

  21. Ohno, S. Sex Chromosomes and Sex Linked Genes (Springer-Verlag, Berlin/Heidelberg, 1967).

    Book  Google Scholar 

  22. Millwood, I.Y. et al. A gene-based genetic linkage and comparative map of the rat X chromosome. Genomics 40, 253– 261 (1997).

    Article  CAS  Google Scholar 

  23. Yamada, J., Kuramoto, T. & Serikawa, T. A rat genetic linkage map and comparative maps for mouse or human homologous rat genes. Mamm. Genome 5, 63–83 (1994).

    Article  CAS  Google Scholar 

  24. Dietrich, W.F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 ( 1996).

    Article  CAS  Google Scholar 

  25. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  Google Scholar 

  26. Levan, G. et al. The gene map of the Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics 10, 699–718 (1991).

    Article  CAS  Google Scholar 

  27. Kondo, Y. et al. DNA segments mapped by reciprocal use of microsatellite primers between mouse and rat. Mamm. Genome 4, 571 –576 (1993).

    Article  CAS  Google Scholar 

  28. Scalzi, J.M. & Hozier, J.C. Comparative genome mapping: mouse and rat homologies revealed by fluorescence in situ hybridization. Genomics 47, 44–51 (1998).

    Article  CAS  Google Scholar 

  29. Nabika, T. et al. Comparative mapping of novel simple sequence repeat markers in a hypertension-related region on rat chromosome 1. Mamm. Genome 8, 215–217 ( 1997).

    Article  CAS  Google Scholar 

  30. James, M.R. et al. A radiation hybrid map of 506 STS markers spanning human chromosome 11. Nature Genet. 8, 70– 76 (1994).

    Article  CAS  Google Scholar 

  31. Schuler, G.D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

    Article  CAS  Google Scholar 

  32. Stewart, E.A. et al. An STS-based radiation hybrid map of the human genome. Genome Res. 7, 422–433 ( 1997).

    Article  CAS  Google Scholar 

  33. Gyapay, G. et al. A radiation hybrid map of the human genome. Hum. Mol. Genet. 5, 339–346 ( 1996).

    Article  CAS  Google Scholar 

  34. McCarthy, L.C. et al. A first-generation whole genome-radiation hybrid map spanning the mouse genome. Genome Res. 7, 1153– 1161 (1997).

    Article  CAS  Google Scholar 

  35. Yang, Y.P. & Womack, J.E. Parallel radiation hybrid mapping: a powerful tool for high-resolution genomic comparison. Genome Res. 8, 731–736 ( 1998).

    Article  CAS  Google Scholar 

  36. Catzellis, F.M., Dicerman, A.W., Michaux, J. & Kirsh, J.A.W. DNA hybridization and rodent phylogeny. in Mammal Phylogeny (eds Szalay, F.S., Novacek, M.J. & Mckiennu, M.C.) 159– 172 (Springer Verlag, New York, 1993).

    Chapter  Google Scholar 

  37. Collins, D.W. & Jukes, T.H. Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics 20, 386–396 ( 1994).

    Article  CAS  Google Scholar 

  38. Andersson, L. et al. Comparative genome organization: first international workshop. Mamm. Genome 7, 717–734 (1996).

    Article  CAS  Google Scholar 

  39. Carver, E.A. & Stubbs, L. Zooming in on the human-mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Res. 7, 1123–1137 (1997).

    Article  CAS  Google Scholar 

  40. Graves, J.A.M. Mammals that break the rules: genetics of marsupials and monotremes. Annu. Rev. Genet. 30, 233–260 (1996).

    Article  CAS  Google Scholar 

  41. Westerveld, A., Visser, R., Meerta Khan, P. & Bootsma, D. Loss of human genetic markers in man-Chinese hamster somatic cell hybrids. Nature New Biol. 234, 20– 24 (1971).

    Article  CAS  Google Scholar 

  42. Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K. & Mattick, J.S. Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008 (1991).

    Article  CAS  Google Scholar 

  43. Day, I.N.M., Humphries, S.E., Richards, S., Norton, D. & Reid, M. High-throughput genotyping using horizontal polyacrylamide gels with wells arranged for microplate array diagonal gel electrophoresis (MADGE). BioTechniques 19, 830–834 (1995).

    CAS  PubMed  Google Scholar 

  44. Matise, T.C., Perlin, M. & Chakravarti, A. Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nature Genet. 6, 384–390 ( 1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of Otsuka GEN Research Institute, especially Y. Kuga, A. Takaichi, F. Aki, Y. Fujii, N. Haraguchi, K. Higashi, S. Kato, K. Nakagawa, Y. Nakahara, A. Sano, T. Suto, K. Yamada and T. Wakamatsu for their technical assistance; T. Matise for help with MultiMap; P. Rodriguez-Tomé and P. Lijnzaad for help with RHdb submissions; and R.E. White for his generous help. Work in Oxford was supported by the Wellcome Trust. G.M.L. is a Wellcome Trust Principal Research Fellow. Work in both Oxford and Cambridge was partly supported by EC Biotechnology Grant BIO4-CT96-0372. Work in the laboratory of M.R.J. also used tools developed under EC grant BMH4-CT95-1565 and Wellcome Trust grant 045148/B/95.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akira Tanigami or Michael R. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Bihoreau, MT., McCarthy, L. et al. A radiation hybrid map of the rat genome containing 5,255 markers. Nat Genet 22, 27–36 (1999). https://doi.org/10.1038/8737

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing