Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simple purification of human chromosomes to homogeneity using muntjac hybrid cells

Abstract

Chromosome sorting from hybrid cells offers enormous advantages for gene mapping and cloning, but purification of most chromosomes has been largely hindered by their similarity in size to other chromosomes. We have developed a novel cell line and strategy that allows simple, mass purification of mammalian chromosomes, permitting significant target genome enrichment. This strategy takes advantage of the small number of giant chromosomes (1,2,X) of the female Indian muntjac, a barking deer, avoiding the problem of size similarity. We introduced human chromosomes into a cell line derived from a muntjac and purified them to homogeneity using a relatively simple technique.This strategy should facilitate the isolation of chromosomes from species other than human for which hybrid cells are not available currently.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stubblefield, E. & Oro, J. The isolation of specific chicken macrochromosomes by zonal centrifugation and flow sorting. Cytometry 2, 273–281 (1991).

    Article  Google Scholar 

  2. Mendelsohn, J., Moore, D.E. & Salzman, N.P. Separation of Isolated Chinese hamster metaphase chromosomes into three size-groups. J. molec. Biol. 32, 101–112 (1968).

    Article  CAS  Google Scholar 

  3. Collard, J.G. et al. Separation of large quantities of Chinese hamster chromosomes by velocity sedimentation at unit gravity followed by flow sorting (FACSII). Exp. Cell Res. 130, 217–227 (1980).

    Article  CAS  Google Scholar 

  4. Langlois, R.G., Yu, L.-C., Gray, J.W. & Carrano, A.V. Quantitative karyotyping of human chromosomes by dual beam flow cytometry. Proc. natn. Acad. Sci. U.S.A. 79, 7876–7880 (1982).

    Article  CAS  Google Scholar 

  5. Bartholdi, M.F., Parson, J.D., Albright, K.A. & Cram, L.S. System for flow sorting chromosomes on the basis of pulse shape. Cytometry 11, 165–172 (1990).

    Article  CAS  Google Scholar 

  6. Mullikin, J., Norgren, R., Lucas, J. & Gray, J. Fringe-scan flow cytometry. Cytometry 9, 111–120 (1988).

    Article  CAS  Google Scholar 

  7. Lucas, J.N. & Gray, J.W. Centromeric index versus DNA content flow Karyotypes of human chromosomes measured by means of slit-scan flow cytometry. Cytometry 8, 273–279 (1987).

    Article  CAS  Google Scholar 

  8. van den Engh, G., Hanson, D. & Trask, B. A computer program for analyzing bivariate flow karyotypes. Cytometry 11, 173–183 (1990).

    Article  CAS  Google Scholar 

  9. Deaven, L.L. et al. Construction of human chromosome-specific DNA libraries from flow-sorted chromosomes. Cold Spring Harbor Symp. Quant. Biol. Ll, 159–167 (1986).

    Article  Google Scholar 

  10. Fuscoe, J.C., Clark, L.M. & Van Dilla, M.A. Construction of fifteen human chromosome-specific DNA libraries from flow-purified chromosomes. Cytogenet. cell Genet. 43, 79–86 (1986).

    Article  CAS  Google Scholar 

  11. Van Dilla, M.A. & Deaven, L.L. Construction of gene libraries for each human chromosome. Cytometry 11, 208–218 (1990).

    Article  CAS  Google Scholar 

  12. Wurster, D.H. & Benirschke, K. Indian Muntjac, Muntiacus muntjak: A deer with a low diploid chromosome number. Science 168, 1364–1366 (1970).

    Article  CAS  Google Scholar 

  13. Yuasa, Y., Hirai, R., Shimojo, H. & Yamamoto, T. Transformation of Indian muntjac cells by murine and avian sarcoma viruses. Jpn. J. Cancer Res. 69, 441–445 (1978).

    CAS  Google Scholar 

  14. Hatanaka, M. & Klein, R. Tumorigenicity of Indian muntjac diploid cells by the proviral Integration of sarcoma gene of a mouse retrovlrus. J. Exp. Med. 150, 1195–1201 (1979).

    Article  CAS  Google Scholar 

  15. Yamaguchi, N. & Huh, N. Establishment and characterization of Indian muntjak cell lines transformed with Simian Virus 40. J. gen. Virol. 42, 289–296 (1979).

    Article  CAS  Google Scholar 

  16. American Type Culture Collection, Catalogue of Cell Lines and Hybridomas 7th edn p. 89 (American Type Culture Collection, Rockville, MD, 1992).

  17. Mulligan, R.C. & Berg, P. Selection for animal cells that express the Escherichiacoli gene coding for xanthine-guanine phosphoribosyltransferase. Proc. natn. Acad. Sci. U.S.A. 78, 2072–2076 (1981).

    Article  CAS  Google Scholar 

  18. Koi, M. et al. Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from human chromosome 11. Science 260, 361–364 (1993).

    Article  CAS  Google Scholar 

  19. Koi, M., Shimizu, M., Morita, H., Yamada, H. & Oshimura, M. Construction of a mouse A9 Clones containing a single human chromosome tagged with neomycin-resistance gene via microcell fusion. Jpn. J. cancer Res. 80, 413–418 (1989).

    Article  CAS  Google Scholar 

  20. Cram, L.S., Campbell, M., Fawcett, J.J. & Deaven, L.L. Polyamine buffer for bivariate human flow cytogenetic analysis and sorting. Meth. cell. Biol. 33, 377–381 (1990).

    Article  CAS  Google Scholar 

  21. Trask, B. in Flow Cytogenetics (ed. Gray, J.W.) 43–46 (Academic, New York, 1989).

    Book  Google Scholar 

  22. Ruddle, F.H. & Creagan, R.P. Parasexual approaches to the genetics of man. Ann. Rev. Genet. 9, 407–486 (1981).

    Article  Google Scholar 

  23. Graham, F.L. & van der Eb, A.J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467 (1973).

    Article  CAS  Google Scholar 

  24. Wigler, M., Pellicer, A., Silverstein, S. & Axel, R. Biochemical transfer of single-copy eucaryotlc genes using total cellular DNA as donor. Cell 14, 725–731 (1978).

    Article  CAS  Google Scholar 

  25. Goyette, M.C. et al. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Molec. cell. Biol. 12, 1387–1395 (1992).

    Article  CAS  Google Scholar 

  26. Fournier, R.E.K. & Ruddle, F.H. Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc. natn. Acad. Sci. U.S.A. 74 (1), 319–323 (1977).

    Article  CAS  Google Scholar 

  27. Saxon, P.J., Srivatsan, E.S., Leipzig, G.V., Sameshima, J.H. & Stanbridge, E.J. Selective transfer of individual human chromosomes to recipient cells. Molec. cell. Biol. 5, 140–146 (1985).

    Article  CAS  Google Scholar 

  28. Deininger, P.L., Jolly, D.J., Rubin, C.M., Friedmann, T. & Schmid, C.W. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J. molec. Biol. 151, 17–33 (1981).

    Article  CAS  Google Scholar 

  29. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  30. Chaconas, G. & Van de Sande, J.H. 5í-32P labeling of RNA and DNA restriction fragments. Meth. Enzymol. 65, 75–85 (1980).

    Article  CAS  Google Scholar 

  31. Bogenberger, J.M., Neumaier, P.S. & Fitler, F. The Muntjak satellite IA sequence is composed of 31-base-pair Internal repeats that are highly homologous to the 31-base-pair subrepeats of the bovine satellite 1.715. Eur. J. Biochem. 148, 55–59 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JY., Koi, M., Stanbridge, E. et al. Simple purification of human chromosomes to homogeneity using muntjac hybrid cells. Nat Genet 7, 29–33 (1994). https://doi.org/10.1038/ng0594-29

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0594-29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing