Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene therapy in a xenograft model of cystic fibrosis lung corrects chloride transport more effectively than the sodium defect

Abstract

We have developed a model of gene therapy for cystic fibrosis (CF) lung disease, based on growth of human CF bronchial xenografts in nu/nu mice. We now report an evaluation of the primary abnormalities in CF lung epithelia — defective Cl secretion and Na hyperabsorption — in xenografts following adenovirus–mediated gene transfer. In vivo infection of CF xenografts with a cystic fibrosis transmembrane regulator (CFTR) recombinant adenovirus, at a multiplicity of infection equal to 100, was sufficient to reconstitute near normal levels of cAMP–stimulated Cl transport, despite transducing only 5% of cells in the pseudostratified epithelium. Correction in sodium hyperabsorption was partial and variable. These experiments define aspects of adenovirus–mediated gene therapy relevant to CF protocols based on intrapulmonary genetic reconstitution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collins, F.S. Cystic fibrosis: molecular biology and therapeutic implications. Science 256, 774–779 (1992).

    Article  CAS  Google Scholar 

  2. Welsh, M.J. & Pick, R.B. Cystic fibrosis. J. clin. Invest. 80, 1523–1526 (1987).

    Article  CAS  Google Scholar 

  3. Boat, T.F., Welsh, M.J. & Beaudet, A.L. Cystic fibrosis. in Metabolic Basis of Inherited Diseases 6th edn (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.)2649–2680 (McGraw-Hill, New Yotk,1989).

    Google Scholar 

  4. Rosenfeld, M.A. et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68, 143–155 (1992).

    Article  CAS  Google Scholar 

  5. Engelhardt, J.F. et al. Submucosal glands are the predominate site of CFTR expression in human bronchus. Nature Genet. 2, 240–248 (1992).

    Article  CAS  Google Scholar 

  6. Engelhardt, J.F., Zepeda, M., Cohn, J.A., Yankaskas, J.R. & Wilson, J.M. Expression of the cystic fibrosis gene in adult human lung. J. clin. Invest. 93, 737–749 (1994).

    Article  CAS  Google Scholar 

  7. Knowles, M.R. et al. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221, 1067–1070 (1983).

    Article  CAS  Google Scholar 

  8. Boucher, R.C. et al. Gene therapy for cystic fibrosis using E1-deleted adenovirus: a phase I trial in the nasal cavity. Hum. Gene Thera. 5, 615–639 (1994).

    Article  CAS  Google Scholar 

  9. Zabner, J. et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75, 207–216 (1993).

    Article  CAS  Google Scholar 

  10. Crystal, R.G. et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nature Genet. 8, 42–50 (1994).

    Article  CAS  Google Scholar 

  11. Wilson, J.M., Engelhardt, J.F., Grossman, M., Simon, R.H. & Yang, Y. Gene therapy of cystic fibrosis lung disease using E1 deleted adenoviruses: a phase l trial. Hum. Gene Thera. 5, 501–519 (1994).

    Article  CAS  Google Scholar 

  12. Whitsett, J.A., Wilmott, R.W. & Trapnell, B. Gene therapy for cystic fibrosis utilizing a replication deficient adenovirus vector to deliver the human cystic fibrosis transmembrane conductance regulator cDNA to the airways: a phase I study. Hum. Gene Thera. 5, 1019–1057 (1994).

    Article  Google Scholar 

  13. Grubb, B.R. et al. Inefficient gene transfer of adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 371, 802–806 (1994).

    Article  CAS  Google Scholar 

  14. Clarke, L.L., Grubb, B.R., Yankaskas, J.R., Cotton, C.U., McKenzie, A. & Boucher, R.C. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in CFTR (−/−) mice. Proc. natn. Acad. Sci. U. S. A. 91, 479–483 (1994).

    Article  CAS  Google Scholar 

  15. Engelhardt, J.F. et al. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1 deleted adenoviruses. Nature Genet. 4, 27–34 (1993).

    Article  CAS  Google Scholar 

  16. Engelhardt, J.F., Yankaskas, J.R. & Wilson, J.M. In vivo retroviral gene transfer into human bronchial epithelia of xenografts. J. clin. Invest. 90, 2598–2607 (1992).

    Article  CAS  Google Scholar 

  17. Willumsen, N.J. & Boucher, R.C. Transcellular sodium transport In cultures cystic fibrosis human nasal epithelium. Am. J. Physiol. 30, C332–C341 (1991).

    Article  Google Scholar 

  18. Ginsberg, H.S. et al. A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc. nafn. Acad. Sci. U.S.A. 88, 1651–1655 (1991).

    Article  CAS  Google Scholar 

  19. Yang, Y., Nunes, F.A., Berencsi, K., Gonczol, E., Engelhardt, J.F. & Wilson, J.M. Inactivation of E2a in recombinant adenoviruses limits cellular immunity and improves the prospect for gene therapy. Nature Genet. 7, 362–369 (1994).

    Article  CAS  Google Scholar 

  20. Olsen, J.C. et al. Correction of the apical membrane chloride permeability defect in polarized cystic fibrosis airway epithelial following retroviral-mediated gene transfer. Hum. Gene Thera. 3, 253–266 (1992).

    Article  CAS  Google Scholar 

  21. Kozarsky, K.F., McKinley, D.R., Austin, L.L., Raper, S.E., Stratford-Perricaudet, L.D. & Wilson, J.M. In vivo correction of low density lipoprotein receptor deficiency in the watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J. biol. Chem. 269, 13695–13702 (1994).

    CAS  PubMed  Google Scholar 

  22. Boucher, R.C., Philip, J.R., Bromberg, A. & Gatzy, T. Airway transepithelial electric potential In vivo: species and regional differences. J. Appl. Physiol. 48, 169–176 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, M., Yang, Y. & Wilson, J. Gene therapy in a xenograft model of cystic fibrosis lung corrects chloride transport more effectively than the sodium defect. Nat Genet 9, 126–131 (1995). https://doi.org/10.1038/ng0295-126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0295-126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing