Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos

Abstract

Mutations in the human SRY–related gene, SOX9, located on chromosome 17, have recently been associated with the sex reversal and skeletal dysmorphology syndrome, campomelic dysplasia. In order to clarify the role of this gene in skeletal development, we have studied the expression of mouse Sox9 during embryogenesis. Sox9 is expressed predominantly in mesenchymal condensations throughout the embryo before and during the deposition of cartilage, consistent with a primary role in skeletal formation. Interspecific backcross mapping has localized mouse Sox9 to distal chromosome 11. The expression pattern and chromosomal location of Sox9 suggest that it may be the gene defective in the mouse skeletal mutant Tail–short, a potential animal model for campomelic dysplasia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davis, R.L., Weintraub, H. & Lassar, A.B. Expression of a single transfected cDNA converts fibroblasts into myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  Google Scholar 

  2. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell–Badge, R. Male development of chromosomalty female mice transgenic for Sry. Nature 351, 117–121 (1991).

    Article  CAS  Google Scholar 

  3. Jantzen, H.-M., Admon, A., Bell, S.P. & Tjian, R. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344, 830–836 (1990).

    Article  CAS  Google Scholar 

  4. Giese, K., Cox, J. & Grosschedl, R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69, 185–195 (1992).

    Article  CAS  Google Scholar 

  5. Harley, V.R., Lovell-Badge, R. & Goodfellow, P.N. Definition of a consensus DNA binding site for SRY. Nucl. Acids Res. 22, 1500–1501 (1994).

    Article  CAS  Google Scholar 

  6. van de Wetering, M., OostefWegel, M., Dooijes, D. & Clevers, H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 10, 123–132 (1991).

    Article  CAS  Google Scholar 

  7. Van de Wetering, M., Oosterwegel, M., van Norren, K. & Clevers, H. Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J. 12, 3847–3854 (1993).

    Article  CAS  Google Scholar 

  8. Denny, P., Swift, S., Connor, F. & Ashworth, A. An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J. 11, 3705–3712 (1992).

    Article  CAS  Google Scholar 

  9. Foster, J.W. et al. Campomelic dysplasia and autosomal sex reversal caused by mutations In an SRY-related gene. Nature 372, 525–530 (1994).

    Article  CAS  Google Scholar 

  10. Wagner, T. et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111–1120 (1994).

    Article  CAS  Google Scholar 

  11. OMIM™ online database. Johns Hopkins University; Baltimore, MD. MIM Number 211970: Camptomelic dwarflsm. Date last edited: October 10, 1993.

  12. Lee, F.A., Issacs, H. & Strauss, J. The ‘camptomelic’ syndrome. Short life-span dwarflsm with respiratory distress, hypotonla, peculiar fades, and multiple skeletal and cartilaginous deformities. Am. J. Dis. Child. 124, 485–496 (1972).

    Article  CAS  Google Scholar 

  13. Houston, C.S. et al. The campomelic syndrome: review, report of 17 cases, and follow-up on the currently 17–year–old boy first reported by Maroteaux et al. in 1971. Am. J. med. Genet. 15, 3–28 (1983).

    Article  CAS  Google Scholar 

  14. Wright, E.M., Snopek, B. & Koopman, P. Seven new members of the Sox gene family expressed during mouse development. Nucl. Acids Res. 21, 744 (1993).

    Article  CAS  Google Scholar 

  15. Kozak, M. The scanning model for translatlon: an update. J. Cell Biol. 108, 229 (1989).

    Article  CAS  Google Scholar 

  16. Mermod, N., O'Neill, E.A., Kelly, T.J. & Tjian, R. The proline-rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell 58, 741–753 (1989).

    Article  CAS  Google Scholar 

  17. Courey, A.J. & Tjian, R. Analysis of SP-1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887–898 (1988).

    Article  CAS  Google Scholar 

  18. Clerc, R.G., Corcoran, L.M., LeBowitz, J.H., Baltimore, D. & Sharp, P.A., The B-cell-specific Oct-2 protein contains POU box-and homeobox-type domains. Genes Dev. 2, 1570–1581 (1988).

    Article  CAS  Google Scholar 

  19. Scheidereit, C. et al. A lymphoid-specific transcription factor that activates immunoglobulin genes is a homeobox protein. Nature 336, 551–557 (1988).

    Article  CAS  Google Scholar 

  20. Muller, M.M., Ruppert, S., Schaffner, W. & Matthias, P. A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 336, 544–551 (1988).

    Article  CAS  Google Scholar 

  21. Norman, C., Runswick, M., Pollock, R. & Treisman, R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55, 989–1003 (1988).

    Article  CAS  Google Scholar 

  22. Lillie, J.W. & Green, M.R. Transcriptional activation by the adenovirus E1a protein. Nature 338, 39–44 (1989).

    Article  CAS  Google Scholar 

  23. Buchberg, A.M. & Camper, S.A. Mouse chromosome 11. Mamm. Genome 4, S164–S175 (1993).

    Article  CAS  Google Scholar 

  24. Morgan, W.C., A new Tall-short mutation in the mouse. J. Hered. 41, 208–215 (1950).

    Article  CAS  Google Scholar 

  25. Deol, M.S. Genetical studies on the skeleton of the mouse XXVIII. Tail-short. Proc. roy. Soc. Lond. B. 155, 78–95 (1961).

    Google Scholar 

  26. Rodriguez, J.I. Vascular anomalies in campomelic syndrome. Am. J. med. Genet 46, 185–192 (1993).

    Article  CAS  Google Scholar 

  27. Koopman, P., Münsterberg, A., Capel, B., Vivian, N. & Lovell–Badge, R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348, 450–452 (1990).

    Article  CAS  Google Scholar 

  28. Kingsley, D.M. What do BMPs do in mammals? Clues from the mouse short-ear mutation. Trends Genet. 10, 16–21 (1994).

    Article  CAS  Google Scholar 

  29. Tommerup, N. et al. Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia (CMPD1) to 17q24.3–q25.1. Nature Genet. 4, 170–174 (1993).

    Article  CAS  Google Scholar 

  30. Hovmoller, M.L. et al. Camptomelic dwarfism. A genetically determined mesenchymal disorder combined with sex reversal. Hereditas 86, 51–62 (1977).

    Article  CAS  Google Scholar 

  31. Gubbay, J. et al. A gene mapping to the sex-determining region of the mouse Y chromosome Is a member of a novel family of embryonically expressed genes. Nature 346, 245–250 (1990).

    Article  CAS  Google Scholar 

  32. Wilkinson, D.G. & Nieto, M.A. Detection of messenger RNA by in situ hybridisation to tissue sections and wholemounts. Methods Enzymol. 225, 361–373 (1993).

    Article  CAS  Google Scholar 

  33. Ojeda, J.L., Barbosa, E. & Gomez Bosque, P. Selective staining in whole chicken embryos; a rapid alcian blue technique. Stain. Technol. 45, 137–138 (1970).

    Article  CAS  Google Scholar 

  34. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual. 2nd edn (Cold Spring Harbor Press, New York, 1989).

    Google Scholar 

  35. The European Baclcross Collaborative Group. Towards high resolution maps of the mouse and human genomes—a facility for ordering markers to 0.1 cM resolution. Hum. molec. Genet. 3, 621–627 (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, E., Hargrave, M., Christiansen, J. et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet 9, 15–20 (1995). https://doi.org/10.1038/ng0195-15

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0195-15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing