Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite

Subjects

Abstract

Photovoltaic devices based on hybrid perovskite materials have exceeded 22% efficiency due to high charge-carrier mobilities and lifetimes. Properties such as photocurrent generation and open-circuit voltage are influenced by the microscopic structure and orientation of the perovskite crystals, but are difficult to quantify on the intra-grain length scale and are often treated as homogeneous within the active layer. Here, we map the local short-circuit photocurrent, open-circuit photovoltage, and dark drift current in state-of-the-art methylammonium lead iodide solar cells using photoconductive atomic force microscopy. We find, within individual grains, spatially correlated heterogeneity in short-circuit current and open-circuit voltage up to 0.6 V. These variations are related to different crystal facets and have a direct impact on the macroscopic power conversion efficiency. We attribute this heterogeneity to a facet-dependent density of trap states. These results imply that controlling crystal grain and facet orientation will enable a systematic optimization of polycrystalline and single-crystal devices for photovoltaic and lighting applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cAFM experiment on the surface of a MAPbI3−xClx solar cell.
Figure 2: Intra-grain heterogeneity of ISC, VOC, and efficiency indicator.
Figure 3: Facet-dependent ISC heterogeneity.
Figure 4: Heterogeneity in VOC and its correlation to ISC.
Figure 5: Heterogeneity in drift current due to changes in effective mass.

Similar content being viewed by others

References

  1. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  Google Scholar 

  2. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A. & Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014).

    Article  Google Scholar 

  3. Li, Y. et al. Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing. J. Phys. Chem. Lett. 6, 493–499 (2015).

    Article  Google Scholar 

  4. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    Article  Google Scholar 

  5. Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 . Solid State Commun. 127, 619–623 (2003).

    Article  Google Scholar 

  6. Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

    Article  Google Scholar 

  7. Sum, T. C. & Mathews, N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7, 2518–2534 (2014).

    Article  Google Scholar 

  8. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech. 9, 687–692 (2014).

    Article  Google Scholar 

  9. Kazim, S., Nazeeruddin, M. K., Grätzel, M. & Ahmad, S. Perovskite as light harvester: a game changer in photovoltaics. Angew. Chem. Int. Ed. 53, 2812–2824 (2014).

    Article  Google Scholar 

  10. National Renewable Energy Laboratory Best Research-Cell Efficiencieswww.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed 17 May 2016).

  11. Li, G. et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015).

    Article  Google Scholar 

  12. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Mater. 13, 476–480 (2014).

    Article  Google Scholar 

  13. Hu, X. et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 24, 7373–7380 (2014).

    Article  Google Scholar 

  14. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  Google Scholar 

  15. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  Google Scholar 

  16. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  Google Scholar 

  17. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article  Google Scholar 

  18. Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

    Article  Google Scholar 

  19. Edri, E. et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells. Nature Commun. 5, 3461 (2014).

    Article  Google Scholar 

  20. Bergmann, V. W. et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nature Commun. 5, 5001 (2014).

    Article  Google Scholar 

  21. Yun, J. S. et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

    Article  Google Scholar 

  22. deQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Article  Google Scholar 

  23. Bischak, C. G., Sanehira, E. M., Precht, J. T., Luther, J. M. & Ginsberg, N. S. Heterogeneous charge carrier dynamics in organic–inorganic hybrid materials: nanoscale lateral and depth-dependent variation of recombination rates in methylammonium lead halide perovskite thin films. Nano Lett. 15, 4799–4807 (2015).

    Article  Google Scholar 

  24. Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).

    Article  Google Scholar 

  25. Ballif, C., Moutinho, H. R. & Al-Jassim, M. M. Cross-sectional electrostatic force microscopy of thin-film solar cells. J. Appl. Phys. 89, 1418–1424 (2001).

    Article  Google Scholar 

  26. Visoly-Fisher, I., Cohen, S. R., Gartsman, K., Ruzin, A. & Cahen, D. Understanding the beneficial role of grain boundaries in polycrystalline solar cells from single-grain-boundary scanning probe microscopy. Adv. Funct. Mater. 16, 649–660 (2006).

    Article  Google Scholar 

  27. Groves, C., Reid, O. G. & Ginger, D. S. Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy. Acc. Chem. Res. 43, 612–620 (2010).

    Article  Google Scholar 

  28. Chen, B. et al. Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6, 4693–4700 (2015).

    Article  Google Scholar 

  29. Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    Article  Google Scholar 

  30. Abass, A., Gestel, D. V., Wichelen, K. V., Maes, B. & Burgelman, M. On the diffusion length and grain size homogeneity requirements for efficient thin-film polycrystalline silicon solar cells. J. Phys. Appl. Phys. 46, 45105 (2013).

    Article  Google Scholar 

  31. Williams, S. T. et al. Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano 8, 10640–10654 (2014).

    Article  Google Scholar 

  32. Tidhar, Y. et al. Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249–13256 (2014).

    Article  Google Scholar 

  33. Yu, H. et al. The role of chlorine in the formation process of ‘CH3NH3PbI3-xClx’ perovskite. Adv. Funct. Mater. 24, 7102–7108 (2014).

    Google Scholar 

  34. Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    Article  Google Scholar 

  35. Guerrero, A., Juarez-Perez, E. J., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Electrical field profile and doping in planar lead halide perovskite solar cells. Appl. Phys. Lett. 105, 133902 (2014).

    Article  Google Scholar 

  36. Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013).

    Article  Google Scholar 

  37. Yuan, Y. et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, 1500615 (2015).

    Article  Google Scholar 

  38. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nature Commun. 6, 7497 (2015).

    Article  Google Scholar 

  39. Leguy, A. M. A. et al. The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nature Commun. 6, 7124 (2015).

    Article  Google Scholar 

  40. Li, J. & Haney, P. M. Molecular alignment and Rashba splitting in organometal halide perovskite CH3NH3PbI3 absorbers. In Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42ndhttp://dx.doi.org/10.1109/PVSC.2015.7355729 (2015).

  41. Coll, M. et al. Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408–1413 (2015).

    Article  Google Scholar 

  42. She, L., Liu, M. & Zhong, D. Atomic structures of CH3NH3PbI3 (001) surfaces. ACS Nano 10, 1126–1131 (2016).

    Article  Google Scholar 

  43. van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    Article  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (NSF DGE 1106400) and by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under Award Number DE-SC0004993. L.L. thanks the AvH foundation for financial support through the Feodor-Lynen program. D.Z. acknowledges support by the US Department of Energy, Office of Science, SBIR/STTR Program Office, under Award Number DE-SC0013212. A.W.-B., M.M., J.L. and S.Y.L. were supported by a DOE Early Career Grant. Work at the Molecular Foundry was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Scientific User Facilities Division, under contract no. DE-AC02-05CH11231 and user proposal 4233. J.B.N., S.E.R.-L. and F.M.T. acknowledge support from the Laboratory Directed Research and Development Program at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.L., L.L., F.M.T., I.D.S. and A.W.-B. conceived the work and designed the research strategy. S.Y.L. measured and analysed the cAFM data. E.W., M.M. and D.K.A. participated in and supported the development of the new cAFM technique. J.L., D.Z., P.D.A., D.F.O., S.W., F.M.T., I.D.S. and A.W.-B. participated in interpretation of the experimental data. L.L. and S.E.R.-L. performed the theoretical calculations supervised by J.B.N. Y.L. performed the sample preparation and macroscale characterization. I.D.S. and F.M.T. supervised the sample preparation and characterization. S.Y.L., L.L., D.F.O., I.D.S. and A.W.-B. wrote the manuscript with help from D.Z., P.D.A., and F.M.T. F.M.T., J.B.N., I.D.S. and A.W.-B. coordinated this research. All authors contributed to the scientific discussion and manuscript revisions.

Corresponding authors

Correspondence to Ian D. Sharp or Alexander Weber-Bargioni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Notes 1–3, Supplementary Discussion, Supplementary Figures 1–20, Supplementary Tables 1 and 2, Supplementary References. (PDF 2030 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leblebici, S., Leppert, L., Li, Y. et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat Energy 1, 16093 (2016). https://doi.org/10.1038/nenergy.2016.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing