Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

High-fat diet, obesity and prostate disease: the ATX–LPA axis?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ATX–LPA axis, high-fat diet, obesity and prostate disease.

References

  1. Ogden CL et al. (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295: 1549–1555

    Article  CAS  Google Scholar 

  2. Giovannucci E et al. (2007) Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer 121: 1571–1578

    Article  CAS  Google Scholar 

  3. Dahle SE et al. (2002) Body size and serum levels of insulin and leptin in relation to the risk of benign prostatic hyperplasia. J Urol 168: 599–604

    Article  CAS  Google Scholar 

  4. Zeng Y et al. (2008) Gene expression profiles of lysophosphatidic acid-related molecules in the prostate: relevance to prostate cancer and benign hyperplasia. Prostate 69: 283–292

    Article  Google Scholar 

  5. van Meeteren LA and Moolenaar WH (2007) Regulation and biological activities of the autotaxin–LPA axis. Prog Lipid Res 46: 145–160

    Article  CAS  Google Scholar 

  6. Saulnier-Blache JS (2006) Secretion and role of autotaxin and lysophosphatidic acid in adipose tissue. J Soc Biol 200: 77–81

    Article  CAS  Google Scholar 

  7. Mills GB and Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3: 582–591

    Article  CAS  Google Scholar 

  8. Boucharaba A et al. (2006) The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci USA 103: 9643–9648

    Article  CAS  Google Scholar 

  9. Yang M et al. (2005) G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the β-catenin pathway. Proc Natl Acad Sci USA 102: 6027–6032

    Article  CAS  Google Scholar 

  10. Hao F et al. (2007) Lysophosphatidic acid induces prostate cancer PC3 cell migration via activation of LPA1, p42 and p38α. Biochim Biophys Acta 1771: 883–892

    Article  CAS  Google Scholar 

  11. Daaka Y (2002) Mitogenic action of LPA in prostate. Biochim Biophys Acta 1582: 265–269

    Article  CAS  Google Scholar 

  12. Sakamoto S et al. (2004) Increased expression of CYR61, an extracellular matrix signaling protein, in human benign prostatic hyperplasia and its regulation by lysophosphatidic acid. Endocrinology 145: 2929–2940

    Article  CAS  Google Scholar 

  13. Sciarra A et al. (2008) Prostate growth and inflammation. J Steroid Biochem Mol Biol 108: 254–260

    Article  CAS  Google Scholar 

  14. D'Aquilio F et al. (2007) Activatory properties of lysophosphatidic acid on human THP-1 cells. Inflammation 30: 167–177

    Article  CAS  Google Scholar 

  15. Osterud B and Bjorklid E (2003) Role of monocytes in atherogenesis. Physiol Rev 83: 1069–1112

    Article  CAS  Google Scholar 

  16. Shimizu H et al. (1991) Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer 63: 963–966

    Article  CAS  Google Scholar 

  17. Tokumura A et al. (2002) Increased formation of lysophosphatidic acids by lysophospholipase D in serum of hypercholesterolemic rabbits. J Lipid Res 43: 307–315

    CAS  PubMed  Google Scholar 

  18. van Meeteren LA et al. (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26: 5015–5022

    Article  CAS  Google Scholar 

  19. Murph M et al. (2006) Of spiders and crabs: the emergence of lysophospholipids and their metabolic pathways as targets for therapy in cancer. Clin Cancer Res 12: 6598–6602

    Article  CAS  Google Scholar 

  20. Hursting SD et al. (2007) The obesity-cancer link: lessons learned from a fatless mouse. Cancer Res 67: 2391–2393

    Article  CAS  Google Scholar 

  21. Barker DJ (1995) Fetal origins of coronary heart disease. BMJ 311: 171–174

    Article  CAS  Google Scholar 

  22. Hilakivi-Clarke L et al. (1999) The influence of maternal diet on breast cancer risk among female offspring. Nutrition 15: 392–401

    Article  CAS  Google Scholar 

  23. Aagaard-Tillery K et al. (2008) Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41: 91–102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Safeway/Prostate Cancer Foundation Special Team Amplification of Research (STAR) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H Getzenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, P., Getzenberg, R. High-fat diet, obesity and prostate disease: the ATX–LPA axis?. Nat Rev Urol 6, 128–131 (2009). https://doi.org/10.1038/ncpuro1311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpuro1311

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing