Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Experimental and clinical approaches for optimization of the graft-versus-leukemia effect

Abstract

The goal of allogeneic (allo)-hematopoietic stem-cell transplantation (HSCT) in the treatment of hematologic malignancies is to harness the graft-versus-leukemia (GVL) effect, while minimizing the risk of graft-versus-host disease (GVHD). Allo-HSCT research has focused on the GVL target antigens and effector mechanisms, and on potential approaches to exploit GVL independently of GVHD. Donor lymphocyte infusion (DLI) achieves the most powerful anti-leukemic responses, and this approach is often used in combination with nonmyeloablative transplant regimens to optimize GVL and reduce GVHD. Serial, dose-escalating, and CD8+ T-cell-depleted DLI have been introduced into clinical practice, while other variants of DLI have so far been explored only in animal models. The role of naturally occurring regulatory T cells in transplantation tolerance is being increasingly acknowledged, and murine studies indicate the potential ability of T cells to regulate GVHD while maintaining GVL. Experimental and clinical studies have demonstrated the importance of host-type chimerism, particularly for antigen-presenting cells, in determining the occurrence of DLI-induced GVL. Murine studies could assist in the development of clinical strategies targeted at antigen-presenting cells. Clinical studies exploiting natural killer-cell-mediated antitumor reactivity in the context of killer inhibitory receptor-ligand-mismatched allo-HSCT have provided promising results.

Key Points

  • Graft-versus-host disease (GVHD) and the graft-versus-leukemia (GVL) effect are closely related immunologic phenomena that occur following allogeneic hematopoietic stem-cell transplantation; however, experimental and clinical data indicate that in selected circumstances the GVL effect can be dissociated from GVHD

  • Nonmyeloablative stem-cell transplantation allows donor engraftment and avoids procedure-related complications, thereby providing a platform for subsequent adoptive immunotherapy, an approach that has successfully broadened patient eligibility for stem-cell transplantation procedures to include older and weaker individuals

  • Minor histocompatibility complex antigens are the most important target antigens of T-cell-mediated GVL responses, and represent attractive targets for adoptive immunotherapy

  • Donor lymphocyte infusion can generate strong anti-leukemic responses and provide a platform for the development of more-refined approaches to the GVL effect, some of which are being applied in the clinic

  • Natural killer cells have been shown to mediate anti-leukemic reactivity in the context of killer inhibitory receptor-ligand-mismatched allogeneic hematopoietic stem-cell transplantation for acute myeloid leukemia, and for other hematologic malignancies

  • Other potentially interesting methods of using the GVL effect to treat leukemia, such as leukemia-specific T cells, selective depletion of potentially alloreactive T cells from donor lymphocyte infusions, suicide-gene-transduced effector T cells, expanded regulatory T cells, and dendritic-cell-based therapies, have proven effective experimentally, but have not yet entered clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barnes DW et al. (1956) Treatment of murine leukaemia with X rays and homologous bone marrow; preliminary communication. Br Med J 32: 626–627

    Article  Google Scholar 

  2. Weiden PL et al. (1981) Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med 304: 1529–1533

    Article  CAS  PubMed  Google Scholar 

  3. Horowitz MM et al. (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75: 555–562

    Article  CAS  PubMed  Google Scholar 

  4. Slavin S et al. (1988) Cellular-mediated immunotherapy of leukemia in conjunction with autologous and allogeneic bone marrow transplantation in experimental animals and man [abstract #1540]. Blood 72 (Suppl 1): 407a

    Google Scholar 

  5. Appelbaum FR (2001) Haematopoietic cell transplantation as immunotherapy. Nature 411: 385–389

    Article  CAS  PubMed  Google Scholar 

  6. Bleakley M et al. (2004) Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 4: 371–380

    Article  CAS  PubMed  Google Scholar 

  7. Kolb HJ et al. (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76: 2462–2465

    Article  CAS  PubMed  Google Scholar 

  8. Hambach L et al. (2005) Immunotherapy of cancer through targeting of minor histocompatibility antigens. Curr Opin Immunol 17: 202–210

    Article  CAS  PubMed  Google Scholar 

  9. Marijt WA et al. (2003) Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 100: 2742–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yotnda P et al. (1998) Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 101: 2290–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zorn E et al. (2001) A CD4+ T cell clone selected from a CML patient after donor lymphocyte infusion recognizes BCR-ABL breakpoint peptides but not tumor cells. Transplantation 71: 1131–1137

    Article  CAS  PubMed  Google Scholar 

  12. Clark RE et al. (2001) Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood 98: 2887–2893

    Article  CAS  PubMed  Google Scholar 

  13. Molldrem JJ et al. (2003) Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 111: 639–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruggeri L et al. (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295: 2097–2100

    Article  CAS  PubMed  Google Scholar 

  15. Ljunggren HG et al. (1990) In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today 11: 237–244

    Article  CAS  PubMed  Google Scholar 

  16. Parham P et al. (2003) Alloreactive killer cells: hindrance and help for haematopoietic transplants. Nat Rev Immunol 3: 108–122

    Article  CAS  PubMed  Google Scholar 

  17. Nimer SD et al. (1994) Selective depletion of CD8+ cells for prevention of graft-versus-host disease after bone marrow transplantation: a randomized controlled trial. Transplantation 57: 82–87

    Article  CAS  PubMed  Google Scholar 

  18. Giralt SA et al. (1994) Leukemia relapse after allogeneic bone marrow transplantation: a review. Blood 84: 3603–3612

    Article  CAS  PubMed  Google Scholar 

  19. Clift RA et al. (1990) Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood 76: 1867–1871

    Article  CAS  PubMed  Google Scholar 

  20. McSweeney PA et al. (2001) Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 97: 3390–3400

    Article  CAS  PubMed  Google Scholar 

  21. Sullivan KM et al. (1989) Graft-versus-host disease as adoptive immunotherapy in patients with advanced hematologic neoplasms. N Engl J Med 320: 828–834

    Article  CAS  PubMed  Google Scholar 

  22. Slavin S et al. (1995) Allogeneic cell therapy for relapsed leukemia after bone marrow transplantation with donor peripheral blood lymphocytes. Exp Hematol 23: 1553–1562

    CAS  PubMed  Google Scholar 

  23. Collins RH Jr et al. (1997) Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 15: 433–444

    Article  PubMed  Google Scholar 

  24. Dazzi F et al. (2000) Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 96: 2712–2716

    Article  CAS  PubMed  Google Scholar 

  25. Kolb HJ et al. (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86: 2041–2050

    Article  CAS  PubMed  Google Scholar 

  26. Porter DL et al. (1994) Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia. N Engl J Med 330: 100–106

    Article  CAS  PubMed  Google Scholar 

  27. Levine JE et al. (2002) Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J Clin Oncol 20: 405–412

    Article  CAS  PubMed  Google Scholar 

  28. Porter DL et al. (1999) Long-term follow-up of patients who achieved complete remission after donor leukocyte infusions. Biol Blood Marrow Transplant 5: 253–261

    Article  CAS  PubMed  Google Scholar 

  29. Champlin R et al. (2000) Harnessing graft-versus-malignancy: non-myeloablative preparative regimens for allogeneic haematopoietic transplantation, an evolving strategy for adoptive immunotherapy. Br J Haematol 111: 18–29

    CAS  PubMed  Google Scholar 

  30. Giralt S et al. (1997) Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood 89: 4531–4536

    Article  CAS  PubMed  Google Scholar 

  31. Whiteway A et al. (2003) Expression of co-stimulatory molecules on acute myeloid leukaemia blasts may effect duration of first remission. Br J Haematol 120: 442–451

    Article  CAS  PubMed  Google Scholar 

  32. Choudhury A et al. (1997) Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 89: 1133–1142

    Article  CAS  PubMed  Google Scholar 

  33. Sehn LH et al. (1999) Comparative outcomes of T-cell-depleted and non-T-cell-depleted allogeneic bone marrow transplantation for chronic myelogenous leukemia: impact of donor lymphocyte infusion. J Clin Oncol 17: 561–568

    Article  CAS  PubMed  Google Scholar 

  34. Marks DI et al. (2000) T cell-depleted unrelated donor bone marrow transplantation for acute myeloid leukemia. Biol Blood Marrow Transplant 6: 646–653

    Article  CAS  PubMed  Google Scholar 

  35. Childs R et al. (1999) Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood 94: 3234–3241

    Article  CAS  PubMed  Google Scholar 

  36. Keil F et al. (1997) Donor leukocyte infusion for leukemic relapse after allogeneic marrow transplantation: lack of residual donor hematopoiesis predicts aplasia. Blood 89: 3113–3117

    Article  CAS  PubMed  Google Scholar 

  37. Mapara MY et al. (2002) Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras: a critical role for host antigen-presenting cells. Blood 100: 1903–1909

    Article  CAS  PubMed  Google Scholar 

  38. Billiau AD et al. (2002) Crucial role of timing of donor lymphocyte infusion in generating dissociated graft-versus-host and graft-versus-leukemia responses in mice receiving allogeneic bone marrow transplants. Blood 100: 1894–1902

    Article  CAS  PubMed  Google Scholar 

  39. Shlomchik WD et al. (1999) Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285: 412–415

    Article  CAS  PubMed  Google Scholar 

  40. Shiobara S et al. (2001) Donor leukocyte infusion for Japanese patients with relapsed leukemia after allogeneic bone marrow transplantation: indications and dose escalation. Ther Apher 5: 40–45

    Article  CAS  PubMed  Google Scholar 

  41. Porter D et al. (2006) Graft-versus-host disease and graft-versus-leukemia after donor leukocyte infusion. Semin Hematol 43: 53–61

    Article  PubMed  Google Scholar 

  42. Dey BR et al. (2005) Anti-tumour response despite loss of donor chimaerism in patients treated with non-myeloablative conditioning and allogeneic stem cell transplantation. Br J Haematol 128: 351–359

    Article  CAS  PubMed  Google Scholar 

  43. Rubio MT et al. (2005) Mechanisms of the antitumor responses and host-versus-graft reactions induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning: a critical role for recipient CD4+ T cells and recipient leukocyte infusion-derived IFN-gamma-producing CD8+ T cells. J Immunol 175: 665–676

    Article  CAS  PubMed  Google Scholar 

  44. Badros A et al. (2001) High response rate in refractory and poor-risk multiple myeloma after allotransplantation using a nonmyeloablative conditioning regimen and donor lymphocyte infusions. Blood 97: 2574–2579

    Article  CAS  PubMed  Google Scholar 

  45. Johnson BD et al. (1995) Delayed infusion of immunocompetent donor cells after bone marrow transplantation breaks graft-host tolerance allows for persistent antileukemic reactivity without severe graft-versus-host disease. Blood 85: 3302–3312

    Article  CAS  PubMed  Google Scholar 

  46. Antin JH et al. (1992) Cytokine dysregulation and acute graft-versus-host disease. Blood 80: 2964–2968

    Article  CAS  PubMed  Google Scholar 

  47. Chakraverty R et al. (2006) An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues. J Exp Med 203: 2021–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bethge WA et al. (2004) Adoptive immunotherapy with donor lymphocyte infusions after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Blood 103: 790–795

    Article  CAS  PubMed  Google Scholar 

  49. Dey BR et al. (2003) Impact of prophylactic donor leukocyte infusions on mixed chimerism, graft-versus-host disease, and antitumor response in patients with advanced hematologic malignancies treated with nonmyeloablative conditioning and allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 9: 320–329

    Article  PubMed  Google Scholar 

  50. Marks DI et al. (2002) The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 100: 3108–3114

    Article  CAS  PubMed  Google Scholar 

  51. Mackinnon S et al. (1995) Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 86: 1261–1268

    Article  CAS  PubMed  Google Scholar 

  52. Peggs KS et al. (2004) Dose-escalated donor lymphocyte infusions following reduced intensity transplantation: toxicity, chimerism, and disease responses. Blood 103: 1548–1556

    Article  CAS  PubMed  Google Scholar 

  53. Dazzi F et al. (2000) Comparison of single-dose and escalating-dose regimens of donor lymphocyte infusion for relapse after allografting for chronic myeloid leukemia. Blood 95: 67–71

    Article  CAS  PubMed  Google Scholar 

  54. Novitzky N et al. (2000) Bone marrow transplantation depleted of T cells followed by repletion with incremental doses of donor lymphocytes for relapsing patients with chronic myeloid leukemia: a therapeutic strategy. Transplantation 69: 1358–1363

    Article  CAS  PubMed  Google Scholar 

  55. Bacigalupo A et al. (1997) Donor lymphocyte infusions (DLI) in patients with chronic myeloid leukemia following allogeneic bone marrow transplantation. Bone Marrow Transplant 19: 927–932

    Article  CAS  PubMed  Google Scholar 

  56. Truitt RL et al. (1991) Contribution of CD4+ and CD8+ T cells to graft-versus-host disease and graft-versus-leukemia reactivity after transplantation of MHC-compatible bone marrow. Bone Marrow Transplant 8: 51–58

    CAS  PubMed  Google Scholar 

  57. OKunewick JP et al. (1991) The role of CD4 and CD8 T cells in the graft-versus-leukemia response in Rauscher murine leukemia. Bone Marrow Transplant 8: 445–452

    CAS  PubMed  Google Scholar 

  58. Johnson BD et al. (1999) Graft-vs-host and graft-vs-leukemia reactions after delayed infusions of donor T-subsets. Biol Blood Marrow Transplant 5: 123–132

    Article  CAS  PubMed  Google Scholar 

  59. Porter DL et al. (1999) The graft-versus-leukemia effects of allogeneic cell therapy. Annu Rev Med 50: 369–386

    Article  CAS  PubMed  Google Scholar 

  60. Faber LM et al. (1995) Generation of CD4+ cytotoxic T-lymphocyte clones from a patient with severe graft-versus-host disease after allogeneic bone marrow transplantation: implications for graft-versus-leukemia reactivity. Blood 86: 2821–2828

    Article  CAS  PubMed  Google Scholar 

  61. Champlin R et al. (1990) Selective depletion of CD8+ T lymphocytes for prevention of graft-versus-host disease after allogeneic bone marrow transplantation. Blood 76: 418–423

    Article  CAS  PubMed  Google Scholar 

  62. Alyea EP et al. (2004) CD8+ cell depletion of donor lymphocyte infusions using cd8 monoclonal antibody-coated high-density microparticles (CD8-HDM) after allogeneic hematopoietic stem cell transplantation: a pilot study. Bone Marrow Transplant 34: 123–128

    Article  CAS  PubMed  Google Scholar 

  63. Amrolia PJ et al. (2003) Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood 102: 2292–2299

    Article  CAS  PubMed  Google Scholar 

  64. Amrolia PJ et al. (2005) Add-back of allodepleted donor T cells to improve immune reconstitution after haplo-identical stem cell transplantation. Cytotherapy 7: 116–125

    Article  CAS  PubMed  Google Scholar 

  65. Koh MB et al. (1999) Selective removal of alloreactive cells from haematopoietic stem cell grafts: graft engineering for GVHD prophylaxis. Bone Marrow Transplant 23: 1071–1079

    Article  CAS  PubMed  Google Scholar 

  66. Martins SL et al. (2004) Functional assessment and specific depletion of alloreactive human T cells using flow cytometry. Blood 104: 3429–3436

    Article  CAS  PubMed  Google Scholar 

  67. Guimond M et al. (2002) P-glycoprotein targeting: a unique strategy to selectively eliminate immunoreactive T cells. Blood 100: 375–382

    Article  CAS  PubMed  Google Scholar 

  68. Godfrey WR et al. (2004) Ex vivo depletion of alloreactive cells based on CFSE dye dilution, activation antigen selection, and dendritic cell stimulation. Blood 103: 1158–1165

    Article  CAS  PubMed  Google Scholar 

  69. Michálek J et al. (2003) Definitive separation of graft-versus-leukemia- and graft-versus-host-specific CD4+ T cells by virtue of their receptor beta loci sequences. Proc Natl Acad Sci USA 100: 1180–1184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Bachar-Lustig E et al. (2003) Anti-third-party veto CTLs overcome rejection of hematopoietic allografts: synergism with rapamycin and BM cell dose. Blood 102: 1943–1950

    Article  CAS  PubMed  Google Scholar 

  71. Arditti FD et al. (2005) Eradication of B-CLL by autologous and allogeneic host nonreactive anti-third-party CTLs. Blood 105: 3365–3371

    Article  CAS  PubMed  Google Scholar 

  72. Moss P et al. (2005) Cellular immunotherapy for viral infection after HSC transplantation. Nat Rev Immunol 5: 9–20

    Article  CAS  PubMed  Google Scholar 

  73. Oosten LE et al. (2004) Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes. Blood 104: 224–226

    Article  CAS  PubMed  Google Scholar 

  74. Fontaine P et al. (2001) Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease. Nat Med 7: 789–794

    Article  CAS  PubMed  Google Scholar 

  75. Buhmann R et al. (1999) CD40-activated B-cell chronic lymphocytic leukemia cells for tumor immunotherapy: stimulation of allogeneic versus autologous T cells generates different types of effector cells. Blood 93: 1992–2002

    Article  CAS  PubMed  Google Scholar 

  76. Schultze JL et al. (1995) Follicular lymphomas can be induced to present alloantigen efficiently: a conceptual model to improve their tumor immunogenicity. Proc Natl Acad Sci USA 92: 8200–8204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stanislawski T et al. (2001) Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2: 962–970

    Article  CAS  PubMed  Google Scholar 

  78. Xue SA et al. (2005) Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 106: 3062–3067

    Article  CAS  PubMed  Google Scholar 

  79. Hacein-Bey-Abina S et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419

    Article  CAS  PubMed  Google Scholar 

  80. Bonini C et al. (2003) Safety of retroviral gene marking with a truncated NGF receptor. Nat Med 9: 367–369

    Article  CAS  PubMed  Google Scholar 

  81. Bonini C et al. (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276: 1719–1724

    Article  CAS  PubMed  Google Scholar 

  82. Tiberghien P et al. (2001) Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 97: 63–72

    Article  CAS  PubMed  Google Scholar 

  83. Verzeletti S et al. (1998) Herpes simplex virus thymidine kinase gene transfer for controlled graft-versus-host disease and graft-versus-leukemia: clinical follow-up and improved new vectors. Hum Gene Ther 9: 2243–2251

    Article  CAS  PubMed  Google Scholar 

  84. Berger C et al. (2006) Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107: 2294–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thomis DC et al. (2001) A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97: 1249–1257

    Article  CAS  PubMed  Google Scholar 

  86. Junker K et al. (2003) Kinetics of cell death in T lymphocytes genetically modified with two novel suicide fusion genes. Gene Ther 10: 1189–1197

    Article  CAS  PubMed  Google Scholar 

  87. Carlotti F et al. (2005) Development of an inducible suicide gene system based on human caspase 8. Cancer Gene Ther 12: 627–639

    Article  CAS  PubMed  Google Scholar 

  88. Waller EK et al. (1999) Irradiated donor leukocytes promote engraftment of allogeneic bone marrow in major histocompatibility complex mismatched recipients without causing graft-versus-host disease. Blood 94: 3222–3233

    Article  CAS  PubMed  Google Scholar 

  89. Truitt RL et al. (1999) Photochemical treatment with S-59 psoralen and ultraviolet A light to control the fate of naive or primed T lymphocytes in vivo after allogeneic bone marrow transplantation. J Immunol 163: 5145–5156

    CAS  PubMed  Google Scholar 

  90. Waller EK et al. (2000) New strategies in allogeneic stem cell transplantation: immunotherapy using irradiated allogeneic T cells. Bone Marrow Transplant 25 (Suppl 2): S20–S24

    Article  PubMed  Google Scholar 

  91. Fowler DH et al. (2006) Phase I clinical trial of costimulated, IL-4 polarized donor CD4(+) T cells as augmentation of allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 12: 1150–1160

    Article  CAS  PubMed  Google Scholar 

  92. Porter DL et al. (2006) A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood 107: 1325–1331

    Article  CAS  PubMed  Google Scholar 

  93. Wood KJ et al. (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3: 199–210

    Article  CAS  PubMed  Google Scholar 

  94. Hoffmann P et al. (2002) Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 196: 389–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Taylor PA et al. (2002) The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99: 3493–3499

    Article  CAS  PubMed  Google Scholar 

  96. Edinger M et al. (2003) CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9: 1144–1150

    Article  CAS  PubMed  Google Scholar 

  97. Trenado A et al. (2003) Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 112: 1688–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jones SC et al. (2003) Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD425 T cells to allow an effective graft-versus-leukemia response. Biol Blood Marrow Transplant 9: 243–256

    Article  PubMed  Google Scholar 

  99. Xia G et al. (2004) Tracking ex vivo-expanded CD4+CD25+ and CD8+CD25+ regulatory T cells after infusion to prevent donor lymphocyte infusion-induced lethal acute graft-versus-host disease. Biol Blood Marrow Transplant 10: 748–760

    Article  PubMed  Google Scholar 

  100. Hoffmann P et al. (2004) Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 104: 895–903

    Article  CAS  PubMed  Google Scholar 

  101. Sato K et al. (2003) Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 18: 367–379

    Article  CAS  PubMed  Google Scholar 

  102. Slavin S et al. (1978) Transplantation of allogeneic bone marrow without graft-versus-host disease using total lymphoid irradiation. J Exp Med 147: 963–972

    Article  CAS  PubMed  Google Scholar 

  103. Lan F et al. (2003) Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural killer T cells. Biol Blood Marrow Transplant 9: 355–363

    Article  PubMed  Google Scholar 

  104. Lowsky R et al. (2005) Protective conditioning for acute graft-versus-host disease. N Engl J Med 353: 1321–1331

    Article  CAS  PubMed  Google Scholar 

  105. Bronte V et al. (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5: 641–654

    Article  CAS  PubMed  Google Scholar 

  106. Billiau AD et al. (2003) Transient expansion of Mac1+Ly6-G+Ly6-C+ early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 102: 740–748

    Article  CAS  PubMed  Google Scholar 

  107. Reddy P et al. (2005) A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat Med 11: 1244–1249

    Article  CAS  PubMed  Google Scholar 

  108. Merad M et al. (2004) Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nat Med 10: 510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harrison BD et al. (2001) Stimulation of autologous proliferative and cytotoxic T-cell responses by “leukemic dendritic cells” derived from blast cells in acute myeloid leukemia. Blood 97: 2764–2771

    Article  CAS  PubMed  Google Scholar 

  110. Giebel S et al. (2003) Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 102: 814–819

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B Sprangers and B Van Wijmeersch are Doctoral Fellows, and AD Billiau is a Postdoctoral Fellow, of the Flanders Fund for Scientific Research, Belgium. S Fevery is a Doctoral Fellow financially supported by a grant from the Flanders Fund for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An D Billiau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprangers, B., Van Wijmeersch, B., Fevery, S. et al. Experimental and clinical approaches for optimization of the graft-versus-leukemia effect. Nat Rev Clin Oncol 4, 404–414 (2007). https://doi.org/10.1038/ncponc0848

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0848

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing