Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal Toll-like receptors: recent advances and implications for disease

Abstract

Toll-like receptors (TLRs) are proteins that recognize specific molecular patterns of pathogens. They can also interact with a variety of endogenous ligands. When stimulated, TLRs initiate a cascade of signaling events leading to the production of a myriad of cytokines and effector molecules. Early investigations extensively characterized TLRs on cells of the innate immune system. More recently, TLRs have been found to reside in organs such as the heart, lungs, intestines, liver and kidneys. The role of these TLRs is not fully understood and is the subject of intensive current research. The available information indicates that renal TLRs have the potential to interact with exogenous and endogenous ligands, thereby influencing kidney function in health and disease. Here, we present an overview of what is currently known about renal TLRs, and discuss the potential implications for further research and clinical practice.

Key Points

  • Long known to be expressed on cells of the innate immune system, Toll-like receptors (TLRs) have now been localized to mammalian organs, including the kidney

  • TLRs recognize specific molecular patterns of pathogens, and endogenous ligands, and subsequently initiate signaling cascades leading to cytokine production

  • Eleven TLRs have been described; messenger RNA for TLRs 1–10 has been detected in human kidney

  • Data indicate that TLRs have roles in sepsis-induced acute renal failure, ischemic injury, urinary tract infection, rejection of kidney allografts, proteinuria and glomerulonephritis

  • Therapies that target TLRs are being investigated

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Toll-like receptor signaling.
Figure 2: The roles of systemic and renal TLR4 in renal injury.
Figure 3: Renal distribution of TLRs in health and disease.

Similar content being viewed by others

References

  1. Beutler B and Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3: 169–176

    Article  CAS  PubMed  Google Scholar 

  2. Bradley SG (1981) Direct action of bacterial endotoxin on cells, mitochondria, and lysosomes. Prog Clin Biol Res 62: 3–14

    CAS  PubMed  Google Scholar 

  3. Beutler B et al. (1985) Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316: 552–554

    Article  CAS  PubMed  Google Scholar 

  4. Michie HR et al. (1988) Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings. Surgery 104: 280–286

    CAS  PubMed  Google Scholar 

  5. Tracey KJ et al. (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–474

    Article  CAS  PubMed  Google Scholar 

  6. Rothstein JL and Schreiber H (1988) Synergy between tumor necrosis factor and bacterial products causes hemorrhagic necrosis and lethal shock in normal mice. Proc Natl Acad Sci USA 85: 607–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Medzhitov R et al. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394–397

    Article  CAS  PubMed  Google Scholar 

  8. Poltorak A et al. (1998) Defective LPS signaling in C3H/He J and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–2088

    Article  CAS  PubMed  Google Scholar 

  9. Akira S and Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4: 499–511

    Article  CAS  PubMed  Google Scholar 

  10. Akira S et al. (2006) Pathogen recognition and innate immunity. Cell 124: 783–801

    Article  CAS  PubMed  Google Scholar 

  11. Hoebe K et al. (2004) The interface between innate and adaptive immunity. Nat Immunol 5: 971–974

    Article  CAS  PubMed  Google Scholar 

  12. Gelman AE et al. (2004) Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol 172: 6065–6073

    Article  CAS  PubMed  Google Scholar 

  13. Pasare C and Medzhitov R (2005) Control of B-cell responses by Toll-like receptors. Nature 438: 364–368

    Article  CAS  PubMed  Google Scholar 

  14. Tsan MF and Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76: 514–519

    Article  CAS  PubMed  Google Scholar 

  15. Li M et al. (2001) An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol 166: 7128–7135

    Article  CAS  PubMed  Google Scholar 

  16. Vabulas RM et al. (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277: 15107–15112

    Article  CAS  PubMed  Google Scholar 

  17. Rifkin IR et al. (2005) Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 204: 27–42

    Article  CAS  PubMed  Google Scholar 

  18. Oldfield V et al. (2005) Imiquimod: in superficial basal cell carcinoma. Am J Clin Dermatol 6: 195–200

    Article  PubMed  Google Scholar 

  19. Chakravarty S and Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25: 1788–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Basu S and Fenton MJ (2004) Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 286: L887–L892

    Article  CAS  PubMed  Google Scholar 

  21. Baumgarten G et al. (2001) In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J Infect Dis 183: 1617–1624

    Article  CAS  PubMed  Google Scholar 

  22. Matsumura T et al. (2000) Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. J Interferon Cytokine Res 20: 915–921

    Article  CAS  PubMed  Google Scholar 

  23. Leemans JC et al. (2005) Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 115: 2894–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wolfs TG et al. (2002) In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-γ and TNF-α mediated up-regulation during inflammation. J Immunol 168: 1286–1293

    Article  CAS  PubMed  Google Scholar 

  25. Cunningham PN et al. (2004) Role of Toll-like receptor 4 in endotoxin-induced acute renal failure. J Immunol 172: 2629–2635

    Article  CAS  PubMed  Google Scholar 

  26. Palmer SM et al. (2006) Donor polymorphisms in Toll-like receptor-4 influence the development of rejection after renal transplantation. Clin Transplant 20: 30–36

    Article  PubMed  Google Scholar 

  27. Chowdhury P et al. (2004) Minireview: functions of the renal tract epithelium in coordinating the innate immune response to infection. Kidney Int 66: 1334–1344

    Article  CAS  PubMed  Google Scholar 

  28. Anders HJ et al. (2004) Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 15: 854–867

    Article  CAS  PubMed  Google Scholar 

  29. Bell JK et al. (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24: 528–533

    Article  CAS  PubMed  Google Scholar 

  30. Burns K et al. (1998) MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 273: 12203–12209

    Article  CAS  PubMed  Google Scholar 

  31. Muzio M et al. (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278: 1612–1615

    Article  CAS  PubMed  Google Scholar 

  32. Karin M and Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18: 621–663

    Article  CAS  PubMed  Google Scholar 

  33. Platanias LC (2003) Map kinase signaling pathways and hematologic malignancies. Blood 101: 4667–4679

    Article  CAS  PubMed  Google Scholar 

  34. Schieven GL (2005) The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem 5: 921–928

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W and Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12: 9–18

    Article  CAS  PubMed  Google Scholar 

  36. Ninomiya-Tsuji J et al. (1999) The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398: 252–256

    Article  CAS  PubMed  Google Scholar 

  37. Akira S (2003) Toll-like receptor signaling. J Biol Chem 278: 38105–38108

    Article  CAS  PubMed  Google Scholar 

  38. Akira S and Hoshino K (2003) Myeloid differentiation factor 88-dependent and -independent pathways in toll-like receptor signaling. J Infect Dis 187 (Suppl 2): S356–S363

    Article  CAS  PubMed  Google Scholar 

  39. Bussolati B et al. (2002) Urinary soluble CD14 mediates human proximal tubular epithelial cell injury induced by LPS. Int J Mol Med 10: 441–449

    CAS  PubMed  Google Scholar 

  40. Ortiz-Arduan A et al. (1996) Regulation of Fas and Fas ligand expression in cultured murine renal cells and in the kidney during endotoxemia. Am J Physiol 271: F1193–F1201

    CAS  PubMed  Google Scholar 

  41. Peherstorfer E et al. (2002) Effects of microinjection of synthetic Bcl-2 domain peptides on apoptosis of renal tubular epithelial cells. Am J Physiol Renal Physiol 283: F190–F196

    Article  CAS  PubMed  Google Scholar 

  42. Oberholzer C et al. (2001) Apoptosis in sepsis: a new target for therapeutic exploration. FASEB J 15: 879–892

    Article  CAS  PubMed  Google Scholar 

  43. Guo R et al. (2004) Acute renal failure in endotoxemia is dependent on caspase activation. J Am Soc Nephrol 15: 3093–3102

    Article  PubMed  Google Scholar 

  44. Bannerman DD et al. (2002) The Fas-associated death domain protein suppresses activation of NF-κB by LPS and IL-1β. J Clin Invest 109: 419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duckett CS (2002) Apoptosis and NF-κB: the FADD connection. J Clin Invest 109: 579–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aliprantis AO et al. (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285: 736–739

    Article  CAS  PubMed  Google Scholar 

  47. Aliprantis AO et al. (2000) The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 19: 3325–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaiser WJ and Offermann MK (2005) Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J Immunol 174: 4942–4952

    Article  CAS  PubMed  Google Scholar 

  49. Cunningham PN et al. (2002) Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. J Immunol 168: 5817–5823

    Article  CAS  PubMed  Google Scholar 

  50. Peralta Soler A et al. (1996) Tissue remodeling during tumor necrosis factor-induced apoptosis in LLC-PK1 renal epithelial cells. Am J Physiol 270: F869–F879

    CAS  PubMed  Google Scholar 

  51. Zarember KA and Godowski PJ (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168: 554–561

    Article  CAS  PubMed  Google Scholar 

  52. Nishimura M and Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28: 886–892

    Article  CAS  PubMed  Google Scholar 

  53. Backhed F et al. (2001) Induction of innate immune responses by Escherichia coli and purified lipopolysaccharide correlate with organ- and cell-specific expression of Toll-like receptors within the human urinary tract. Cell Microbiol 3: 153–158

    Article  CAS  PubMed  Google Scholar 

  54. Tsuboi N et al. (2002) Roles of toll-like receptors in C-C chemokine production by renal tubular epithelial cells. J Immunol 169: 2026–2033

    Article  CAS  PubMed  Google Scholar 

  55. Patole PS et al. (2005) Viral double-stranded RNA aggravates lupus nephritis through Toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells. J Am Soc Nephrol 16: 1326–1338

    Article  CAS  PubMed  Google Scholar 

  56. Wornle M et al. (2006) Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am J Pathol 168: 370–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Anders HJ et al. (2003) Bacterial CpG-DNA aggravates immune complex glomerulonephritis: role of TLR9-mediated expression of chemokines and chemokine receptors. J Am Soc Nephrol 14: 317–326

    Article  CAS  PubMed  Google Scholar 

  58. Anders HJ et al. (2004) Activation of toll-like receptor-9 induces progression of renal disease in MRL-Fas(lpr) mice. FASEB J 18: 534–536

    Article  CAS  PubMed  Google Scholar 

  59. Pawar RD et al. (2006) Toll-like receptor-7 modulates immune complex glomerulonephritis. J Am Soc Nephrol 17: 141–149

    Article  CAS  PubMed  Google Scholar 

  60. Zhang D et al. (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303: 1522–1526

    Article  CAS  PubMed  Google Scholar 

  61. Kim BS et al. (2005) Ischemia-reperfusion injury activates innate immunity in rat kidneys. Transplantation 79: 1370–1377

    Article  PubMed  Google Scholar 

  62. Lim SW et al. (2005) Cyclosporine-induced renal injury induces toll-like receptor and maturation of dendritic cells. Transplantation 80: 691–699

    Article  CAS  PubMed  Google Scholar 

  63. Samuelsson P et al. (2004) Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect Immun 72: 3179–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Laestadius A et al. (2003) Developmental aspects of Escherichia coli-induced innate responses in rat renal epithelial cells. Pediatr Res 54: 536–541

    Article  CAS  PubMed  Google Scholar 

  65. El-Achkar TM et al. (2006) Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol 290: F1034–F1043

    Article  CAS  PubMed  Google Scholar 

  66. Riedemann NC et al. (2003) The enigma of sepsis. J Clin Invest 112: 460–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hotchkiss RS and Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 138–150

    Article  CAS  PubMed  Google Scholar 

  68. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420: 885–891

    Article  CAS  PubMed  Google Scholar 

  69. Watson J and Riblet R (1974) Genetic control of responses to bacterial lipopolysaccharides in mice. I. Evidence for a single gene that influences mitogenic and immunogenic responses to lipopolysaccharides. J Exp Med 140: 1147–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sultzer BM (1968) Genetic control of leucocyte responses to endotoxin. Nature 219: 1253–1254

    Article  CAS  PubMed  Google Scholar 

  71. Apte RN et al. (1977) Genetic analysis of generation of serum interferon by bacterial lipopolysaccharide. J Immunol 119: 1898–1902

    CAS  PubMed  Google Scholar 

  72. Woods JP et al. (1988) Mouse genetic locus Lps influences susceptibility to Neisseria meningitidis infection. Infect Immun 56: 1950–1955

    CAS  PubMed  PubMed Central  Google Scholar 

  73. O'Brien AD et al. (1980) Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol 124: 20–24

    CAS  PubMed  Google Scholar 

  74. Schrier RW and Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351: 159–169

    Article  CAS  PubMed  Google Scholar 

  75. Wan L et al. (2003) The pathogenesis of septic acute renal failure. Curr Opin Crit Care 9: 496–502

    Article  PubMed  Google Scholar 

  76. Knotek M et al. (2001) Endotoxemic renal failure in mice: role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int 59: 2243–2249

    Article  CAS  PubMed  Google Scholar 

  77. Eskandari MK et al. (1992) Anti-tumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxemia. J Immunol 148: 2724–2730

    CAS  PubMed  Google Scholar 

  78. Bertani T et al. (1989) Tumor necrosis factor induces glomerular damage in the rabbit. Am J Pathol 134: 419–430

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zager RA et al. (2005) Ischemic proximal tubular injury primes mice to endotoxin-induced TNF-α generation and systemic release. Am J Physiol Renal Physiol 289: F289–F297

    Article  CAS  PubMed  Google Scholar 

  80. Lehnardt S et al. (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 100: 8514–8519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fearns C et al. (1995) Murine CD14 gene expression in vivo: extramyeloid synthesis and regulation by lipopolysaccharide. J Exp Med 181: 857–866

    Article  CAS  PubMed  Google Scholar 

  82. Morrissey J et al. (2000) Induction of CD14 in tubular epithelial cells during kidney disease. J Am Soc Nephrol 11: 1681–1690

    CAS  PubMed  Google Scholar 

  83. Pugin J et al. (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci USA 90: 2744–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fearns C and Loskutoff DJ (1997) Role of tumor necrosis factor alpha in induction of murine CD14 gene expression by lipopolysaccharide. Infect Immun 65: 4822–4831

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dunzendorfer S et al. (2004) TLR4 is the signaling but not the lipopolysaccharide uptake receptor. J Immunol 173: 1166–1170

    Article  CAS  PubMed  Google Scholar 

  86. Zhai Y et al. (2004) Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol 173: 7115–7119

    Article  CAS  PubMed  Google Scholar 

  87. Shen XD et al. (2005) Toll-like receptor and heme oxygenase-1 signaling in hepatic ischemia/reperfusion injury. Am J Transplant 5: 1793–1800

    Article  CAS  PubMed  Google Scholar 

  88. Chong AJ et al. (2004) Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg 128: 170–179

    Article  CAS  PubMed  Google Scholar 

  89. Shishido T et al. (2003) Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation 108: 2905–2910

    Article  CAS  PubMed  Google Scholar 

  90. Ohashi K et al. (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164: 558–561

    Article  CAS  PubMed  Google Scholar 

  91. Alexopoulou L et al. (2001) Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413: 732–738

    Article  CAS  PubMed  Google Scholar 

  92. Shahin RD et al. (1987) Neutrophil recruitment and bacterial clearance correlated with LPS responsiveness in local gram-negative infection. J Immunol 138: 3475–3480

    CAS  PubMed  Google Scholar 

  93. Haraoka M et al. (1999) Neutrophil recruitment and resistance to urinary tract infection. J Infect Dis 180: 1220–1229

    Article  CAS  PubMed  Google Scholar 

  94. Svanborg C et al. (2001) Toll-like receptor signaling and chemokine receptor expression influence the severity of urinary tract infection. J Infect Dis 183 (Suppl 1): S61–S65

    Article  CAS  PubMed  Google Scholar 

  95. Schilling JD et al. (2003) Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc Natl Acad Sci USA 100: 4203–4208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Patole PS et al. (2005) Toll-like receptor-4: renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney Int 68: 2582–2587

    Article  CAS  PubMed  Google Scholar 

  97. Hedlund M et al. (2001) Type 1 fimbriae deliver an LPS- and TLR4-dependent activation signal to CD14-negative cells. Mol Microbiol 39: 542–552

    Article  CAS  PubMed  Google Scholar 

  98. Frendeus B et al. (2001) Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol Microbiol 40: 37–51

    Article  CAS  PubMed  Google Scholar 

  99. Schilling JD et al. (2003) CD14- and Toll-like receptor-dependent activation of bladder epithelial cells by lipopolysaccharide and type 1 piliated Escherichia coli. Infect Immun 71: 1470–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Backhed F et al. (2002) TLR4-dependent recognition of lipopolysaccharide by epithelial cells requires sCD14. Cell Microbiol 4: 493–501

    Article  CAS  PubMed  Google Scholar 

  101. Serafini-Cessi F et al. (2003) Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 42: 658–676

    Article  CAS  PubMed  Google Scholar 

  102. Orskov I et al. (1980) Tamm-Horsfall protein or uromucoid is the normal urinary slime that traps type 1 fimbriated Escherichia coli. Lancet 1: 887

    Article  CAS  PubMed  Google Scholar 

  103. Parkkinen J et al. (1988) Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins. Infect Immun 56: 2623–2630

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pak J et al. (2001) Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276: 9924–9930

    Article  CAS  PubMed  Google Scholar 

  105. Bates JM et al. (2004) Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 65: 791–797

    Article  CAS  PubMed  Google Scholar 

  106. Saemann MD et al. (2005) Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J Clin Invest 115: 468–475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Pockley AG (2001) Heat shock proteins, anti-heat shock protein reactivity and allograft rejection. Transplantation 71: 1503–1507

    Article  CAS  PubMed  Google Scholar 

  108. Goldstein DR et al. (2003) Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J Clin Invest 111: 1571–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McLaughlin K et al. (2002) Cytomegalovirus seromismatching increases the risk of acute renal allograft rejection. Transplantation 74: 813–816

    Article  PubMed  Google Scholar 

  110. Tesar BM et al. (2004) TH1 immune responses to fully MHC mismatched allografts are diminished in the absence of MyD88, a toll-like receptor signal adaptor protein. Am J Transplant 4: 1429–1439

    Article  CAS  PubMed  Google Scholar 

  111. Arbour NC et al. (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25: 187–191

    Article  CAS  PubMed  Google Scholar 

  112. Ducloux D et al. (2005) Relevance of Toll-like receptor-4 polymorphisms in renal transplantation. Kidney Int 67: 2454–2461

    Article  CAS  PubMed  Google Scholar 

  113. Pavenstadt H et al. (2003) Cell biology of the glomerular podocyte. Physiol Rev 83: 253–307

    Article  CAS  PubMed  Google Scholar 

  114. Reiser J et al. (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113: 1390–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hoebe K et al. (2003) Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat Immunol 4: 1223–1229

    Article  CAS  PubMed  Google Scholar 

  116. Schmidtke JR and Johnson AG (1971) Regulation of the immune system by synthetic polynucleotides. I. Characteristics of adjuvant action on antibody synthesis. J Immunol 106: 1191–1200

    CAS  PubMed  Google Scholar 

  117. Condie RM et al. (1955) Effect of meningococcal endotoxin on the immune response. Proc Soc Exp Biol Med 90: 355–360

    Article  CAS  PubMed  Google Scholar 

  118. Leadbetter EA et al. (2002) Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416: 603–607

    Article  CAS  PubMed  Google Scholar 

  119. Christensen SR et al. (2005) Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med 202: 321–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hemmi H et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745

    Article  CAS  PubMed  Google Scholar 

  121. Means TK et al. (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115: 407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ronnblom L and Alm GV (2001) A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J Exp Med 194: F59–F63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wu X and Peng SL (2006) Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54: 336–342

    Article  CAS  PubMed  Google Scholar 

  124. Boule MW et al. (2004) Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 199: 1631–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hur JW et al. (2005) Association study of Toll-like receptor 9 gene polymorphism in Korean patients with systemic lupus erythematosus. Tissue Antigens 65: 266–270

    Article  CAS  PubMed  Google Scholar 

  126. Sanchez E et al. (2004) Polymorphisms of toll-like receptor 2 and 4 genes in rheumatoid arthritis and systemic lupus erythematosus. Tissue Antigens 63: 54–57

    Article  CAS  PubMed  Google Scholar 

  127. Patole PS et al. (2005) G-rich DNA suppresses systemic lupus. J Am Soc Nephrol 16: 3273–3280

    Article  CAS  PubMed  Google Scholar 

  128. Heil F et al. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: 1526–1529

    Article  CAS  PubMed  Google Scholar 

  129. Will CL and Luhrmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13: 290–301

    Article  CAS  PubMed  Google Scholar 

  130. Hawn TR et al. (2005) A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc Natl Acad Sci USA 102: 10593–10597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4: 249–258

    Article  CAS  PubMed  Google Scholar 

  132. Ulevitch RJ (2004) Therapeutics targeting the innate immune system. Nat Rev Immunol 4: 512–520

    Article  CAS  PubMed  Google Scholar 

  133. Schmidt C (2006) Toll-like receptor therapies compete to reduce side effects. Nat Biotechnol 24: 230–231

    Article  CAS  PubMed  Google Scholar 

  134. Rossignol DP and Lynn M (2005) TLR4 antagonists for endotoxemia and beyond. Curr Opin Investig Drugs 6: 496–502

    CAS  PubMed  Google Scholar 

  135. Takeuchi O et al. (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169: 10–14

    Article  CAS  PubMed  Google Scholar 

  136. Hoshino K et al. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162: 3749–3752

    CAS  PubMed  Google Scholar 

  137. Schwandner R et al. (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274: 17406–17409

    Article  CAS  PubMed  Google Scholar 

  138. Underhill DM et al. (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811–815

    Article  CAS  PubMed  Google Scholar 

  139. Bulut Y et al. (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168: 1435–1440

    Article  CAS  PubMed  Google Scholar 

  140. Kawasaki K et al. (2000) Mouse toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem 275: 2251–2254

    Article  CAS  PubMed  Google Scholar 

  141. Okamura Y et al. (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276: 10229–10233

    Article  CAS  PubMed  Google Scholar 

  142. Termeer C et al. (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195: 99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Smiley ST et al. (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167: 2887–2894

    Article  CAS  PubMed  Google Scholar 

  144. Johnson GB et al. (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 168: 5233–5239

    Article  CAS  PubMed  Google Scholar 

  145. Hayashi F et al. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–1103

    Article  CAS  PubMed  Google Scholar 

  146. Ozinsky A et al. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 97: 13766–13771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Takeuchi O et al. (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933–940

    Article  CAS  PubMed  Google Scholar 

  148. Hemmi H et al. (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196–200

    Article  CAS  PubMed  Google Scholar 

  149. Jurk M et al. (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3: 499

    Article  CAS  PubMed  Google Scholar 

  150. Yarovinsky F et al. (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308: 1626–1629

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases grant 1RO1 DK60495-01A1 (PCD), a Paul Teschan research fund award (PCD) and a National Kidney Foundation-Indiana grant (TME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre C Dagher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Achkar, T., Dagher, P. Renal Toll-like receptors: recent advances and implications for disease. Nat Rev Nephrol 2, 568–581 (2006). https://doi.org/10.1038/ncpneph0300

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing