Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contemplating the bright future of stem cell therapy for cardiovascular disease

Abstract

Not long ago, it was assumed that mammalian hearts were so differentiated that regeneration of cardiac tissue was not possible, but now an increasing amount of information suggests that the intrinsic regenerative capacity of the heart can be encouraged by stimulating resident stem cells or transplanting extracardiac progenitor cells. In the future, cardiovascular stem cell therapy may be administered to all patients. Here, we review what has happened and look at where we are going.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Okrainec K et al. (2004) Coronary artery disease in the developing world. Am Heart J 148: 7–15

    Article  PubMed  Google Scholar 

  2. Reddy KS (2003) Global perspective on cardiovascular disease. In Evidence-Based Cardiology (edn 2), 91–102 (Eds Yusuf S et al.) London: BMJ Books

    Google Scholar 

  3. Antman EM and Van de Werf F (2004) Pharmacoinvasive therapy; the future of treatment for ST-elevation myocardial infarction. Circulation 109: 2480–2486

    Article  PubMed  Google Scholar 

  4. Eagle KA et al.; GRACE Investigators (2002) Practice variation and missed opportunities for reperfusion in ST-segment-elevation myocardial infarction: findings from the Global Registry of Acute Coronary Events (GRACE). Lancet 359: 373–377

    Article  PubMed  Google Scholar 

  5. Antman EM et al. (2004) ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). Circulation 110: 282–292

    Google Scholar 

  6. Pfeffer MA and Braunwald E (1990) Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 81: 1161–1172

    Article  CAS  PubMed  Google Scholar 

  7. Bolognese L et al. (2004) Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109: 1121–1126

    Article  PubMed  Google Scholar 

  8. Beltrami AP et al. (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344: 1750–1757

    Article  CAS  PubMed  Google Scholar 

  9. Anversa P and Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415: 240–243

    Article  CAS  PubMed  Google Scholar 

  10. Kocher AA et al. (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7: 430–436

    Article  CAS  PubMed  Google Scholar 

  11. Orlic D et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–705

    Article  CAS  PubMed  Google Scholar 

  12. Orlic D et al. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98: 10344–10349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wollert KC and Drexler H (2005) Clinical applications of stem cells for the heart. Circ Res 96: 151–163

    Article  CAS  PubMed  Google Scholar 

  14. Fuchs E et al. (2004) Socializing with the neighbors: stem cells and their niche. Cell 116: 769–778

    Article  CAS  PubMed  Google Scholar 

  15. Beltrami AP et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776

    Article  CAS  PubMed  Google Scholar 

  16. Messina E et al. (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95: 911–922

    Article  CAS  PubMed  Google Scholar 

  17. Dawn B and Bolli R (2005) Adult bone marrow-derived cells: regenerative potential, plasticity, and tissue commitment. Basic Res Cardiol 100: 494–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alvarez-Dolado M et al. (2003) Fusion of bone-marrow derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425: 968–973

    Article  CAS  PubMed  Google Scholar 

  19. Balsam LB et al. (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428: 668–673

    Article  CAS  PubMed  Google Scholar 

  20. Murry CE et al. (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428: 664–668

    Article  CAS  PubMed  Google Scholar 

  21. Oh H et al. (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100: 12313–12318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsuura K et al. (2004) Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. J Cell Biol 167: 351–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koyanagi M et al. (2005) Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res 96: 1039–1041

    Article  CAS  PubMed  Google Scholar 

  24. Leri A et al. (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85: 1373–1416

    Article  CAS  PubMed  Google Scholar 

  25. Rehman J et al. (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169

    Article  PubMed  Google Scholar 

  26. Urbich C and Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95: 343–353

    Article  CAS  PubMed  Google Scholar 

  27. Leobon B et al. (2003) Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 100: 7808–7811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang YL et al. (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80: 229–236

    Article  PubMed  Google Scholar 

  29. Kehat I et al. (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotchechnol 22: 1282–1289

    Article  CAS  Google Scholar 

  30. Murry CE et al. (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98: 2512–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taylor DA et al. (1998) Regenerating fuctional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4: 929–933

    Article  CAS  PubMed  Google Scholar 

  32. Taylor DA (2004) Cell-based myocardial repair: How should we proceed? Intern J Cardiol 95: S8–S12

    Article  Google Scholar 

  33. Fraser JK et al. (2004) Adult stem cell therapy for the heart. Int J Biochem Cell Biol 36: 658–666

    Article  CAS  PubMed  Google Scholar 

  34. Bhatia M (2001) Ac133 expression in human stem cells. Leukemia 15: 1685–1688

    Article  CAS  PubMed  Google Scholar 

  35. Asahara T and Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287: C572–C579

    Article  CAS  PubMed  Google Scholar 

  36. Lin Y et al. (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105: 71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoon YS et al. (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarctation. J Clin Invest 115: 326–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Minguell JJ et al. (2001) Mesenchymal stem cells. Exp Biol Med 226: 507–520

    Article  CAS  Google Scholar 

  39. Dominici M et al. (2001) Bone marrow mesenchymal cells: biological properties and clinical applications. J Biol Regul Homeost Agents 15: 28–37

    CAS  PubMed  Google Scholar 

  40. Wang JS et al. (2000) Marrow stromal cells for cellular cardiomyoplaty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 120: 999–1005

    Article  CAS  PubMed  Google Scholar 

  41. Mangi AA et al. (2003) Mesenchymal stem cells modified with Akt prevent remodelling and restore performance of infarcted hearts. Nat Med 9: 1195–1201

    Article  CAS  PubMed  Google Scholar 

  42. Zuk PA et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228

    Article  CAS  PubMed  Google Scholar 

  43. Ashjiam PH et al. (2003) In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 111: 1922–1931

    Article  Google Scholar 

  44. Rangappa S et al. (2003) Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 126: 124–132

    Article  CAS  PubMed  Google Scholar 

  45. Sudhoff T and Shongen D (2002) Circulating endothelial adhesion molecules (sE-selectin, sVCAM-1 and sICAM-1) during rHuG-CSF-stimulated stem cell mobilization. J Hematother Stem Cell Res 11: 147–151

    Article  CAS  PubMed  Google Scholar 

  46. Martin CM et al. (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265: 262–265

    Article  CAS  PubMed  Google Scholar 

  47. Laugwitz KL et al. (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433: 647–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davani S et al. (2005) Can stem cells mend a broken heart? Cardiovasc Res 65: 305–316

    Article  CAS  PubMed  Google Scholar 

  49. Frangogiannis NG et al. (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53: 31–47

    Article  CAS  PubMed  Google Scholar 

  50. Hofmann M et al. (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111: 2198–2202

    Article  PubMed  Google Scholar 

  51. Kucia M et al. (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95: 1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De Falco E et al. (2004) Sdf-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104: 3472–3482

    Article  CAS  PubMed  Google Scholar 

  53. Askari AT et al. (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362: 697–703

    Article  CAS  PubMed  Google Scholar 

  54. Yamaguchi J et al. (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107: 1322–1328

    Article  CAS  PubMed  Google Scholar 

  55. Abbott JD et al. (2004) Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110: 3300–3305

    Article  PubMed  Google Scholar 

  56. Wojakowski W et al. (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110: 3213–3220

    Article  CAS  PubMed  Google Scholar 

  57. Duan HF et al. (2003) Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 8: 467–474

    Article  CAS  PubMed  Google Scholar 

  58. Strauer BE et al. (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106: 1913–1918

    Article  PubMed  Google Scholar 

  59. Assmus B et al. (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106: 3009–3017

    Article  PubMed  Google Scholar 

  60. Britten MB et al. (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108: 2212–2218

    Article  CAS  PubMed  Google Scholar 

  61. Schächinger V et al. (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44: 1690–1699

    Article  PubMed  Google Scholar 

  62. Fernández-Avilés F et al. (2004) Intracoronary stem cell transplantation in acute myocardial infarction [in Spanish]. Rev Esp Cardiol 57: 201–208

    Article  Google Scholar 

  63. Fernández-Avilés F et al. (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95: 742–748

    Article  PubMed  CAS  Google Scholar 

  64. Kuethe F et al. (2004) Lack of regeneration of myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans with large anterior myocardial infarctions. Int J Cardiol 97: 123–127

    Article  PubMed  Google Scholar 

  65. Obradovic S et al. (2004) Autologous bone marrow-derived progenitor cell transplantation for myocardial regeneration after acute infarction. Vojnosanit Pregl 61: 519–529

    Article  PubMed  Google Scholar 

  66. Wollert KC et al. (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364: 141–148

    Article  PubMed  Google Scholar 

  67. Chen SL et al. (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94: 92–95

    Article  PubMed  Google Scholar 

  68. Katritsis DG et al. (2005) Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 65: 321–329

    Article  PubMed  Google Scholar 

  69. Bartunek J et al. (2005) Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 112: I178–I183

    PubMed  Google Scholar 

  70. Kang HJ et al. (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363: 751–756

    Article  CAS  PubMed  Google Scholar 

  71. Kuethe F et al. (2004) Mobilization of stem cells by granulocyte colony-stimulating factor for the regeneration of myocardial tissue after myocardial infarction [in German]. Dtsch Med Wochenschr 129: 424–428

    CAS  PubMed  Google Scholar 

  72. Kuethe F et al. (2005) Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J 150: 115

    Article  CAS  PubMed  Google Scholar 

  73. Suárez de Lezo J et al. (2005) Effects of stem-cell mobilization with recombinant human granulocyte colony stimulating factor in patients with percutaneously revascularized acute anterior myocardial infarction [in Spanish]. Rev Esp Cardiol 58: 253–261

    Article  PubMed  Google Scholar 

  74. Jorgensen E et al. (2005) In-stent neo-intimal hyperplasia after stem cell mobilization by granulocyte-colony stimulating factor. Preliminary intracoronary ultrasound results from a double-blind randomized placebo-controlled study of patients treated with percutaneous coronary intervention for ST-elevation myocardial infarction (STEMMI Trial). Int J Cardiol [10.1016/j.ijcard.2005.06.045]

  75. Ince H et al. (2005) Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) trial. Circulation 112 (Suppl 9): I73–I80

    PubMed  Google Scholar 

  76. Valgimigli M et al. (2005) Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 26: 1838–1845

    Article  CAS  PubMed  Google Scholar 

  77. Hamano K et al. (2001) Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J 65: 845–847

    Article  CAS  PubMed  Google Scholar 

  78. Tse HF et al. (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361: 47–49

    Article  PubMed  Google Scholar 

  79. Fuchs S et al. (2003) Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 41: 1721–1724

    Article  PubMed  Google Scholar 

  80. Perin EC et al. (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107: 2294–2302

    Article  PubMed  Google Scholar 

  81. Perin EC et al. (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110 (Suppl 1): II213–II218

    PubMed  Google Scholar 

  82. Wang Y et al. (2005) Effect of mobilization of bone marrow stem cells by granulocyte colony stimulating factor on clinical symptoms, left ventricular perfusion and function in patients with severe chronic ischemic heart disease. Int J Cardiol 100: 477–483

    Article  PubMed  Google Scholar 

  83. Boyle AJ et al. (2005) Intra-coronary high-dose CD34+ stem cells in patients with chronic ischemic heart disease: A 12-month follow-up. Int J Cardiol [10.1016/j.ijcard.2005.05.024]

  84. Menasché P et al. (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41: 1078–1083

    Article  PubMed  Google Scholar 

  85. Herreros J et al. (2003) Autologous intramyocardial injection of cultured skeletal muscle derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 24: 2012–2020

    Article  PubMed  Google Scholar 

  86. Chachques JC et al. (2004) Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol 95 (Suppl 1): S29–S33

    Article  PubMed  Google Scholar 

  87. Siminiak T et al. (2004) Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 148: 531–537

    Article  PubMed  Google Scholar 

  88. Smits PC et al. (2003) Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 42: 2063–2069

    Article  PubMed  Google Scholar 

  89. Dib N et al. (2005) Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 112: 1748–1755

    Article  PubMed  Google Scholar 

  90. Siminiak T et al. (2005) Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 26: 1188–1195

    Article  PubMed  Google Scholar 

  91. Galinanes M et al. (2004) Autotransplantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans. Cell Transplant 13: 7–13

    Article  PubMed  Google Scholar 

  92. Stamm C et al. (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361: 45–46

    Article  PubMed  Google Scholar 

  93. Stamm C et al. (2004) CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac Cardiovasc Surg 52: 152–158

    Article  CAS  PubMed  Google Scholar 

  94. Kuethe F et al. (2005) Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans. Int J Cardiol 100: 485–491

    Article  PubMed  Google Scholar 

  95. Erbs S et al. (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 97: 756–762

    Article  CAS  PubMed  Google Scholar 

  96. Archundia A et al. (2005) Direct cardiac injection of G-CSF mobilized bone-marrow stem-cells improves ventricular function in old myocardial infarction. Life Sci 78: 279–283

    Article  CAS  PubMed  Google Scholar 

  97. Strauer BE et al. (2005) Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 46: 1651–1658

    Article  PubMed  Google Scholar 

  98. Massoud TF and Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17: 545–580

    Article  CAS  PubMed  Google Scholar 

  99. Barbash IM et al. (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium. Feasibility, cell migration, and body distribution. Circulation 108: 863–868

    Article  PubMed  Google Scholar 

  100. Aicher A et al. (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labelling. Circulation 107: 2134–2139

    Article  PubMed  Google Scholar 

  101. Wu JC et al. (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108: 1302–1305

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hinds KA et al. (2003) Highly efficient endosomal labelling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102: 867–872

    Article  CAS  PubMed  Google Scholar 

  103. Hill JM et al. (2003) Serial magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108: 1009–1014

    Article  PubMed  PubMed Central  Google Scholar 

  104. Garot J et al. (2003) Magnetic resonance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium. J Am Coll Cardiol 41: 1841–1846

    Article  PubMed  Google Scholar 

  105. Kraitchman DL et al. (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107: 2290–2293

    Article  PubMed  Google Scholar 

  106. Bellenger NG et al. (2000) Reduction in sample size for studies of remodelling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Res 2: 271–278

    Article  CAS  Google Scholar 

  107. Hoffmann R et al. (2005) Assessment of systolic left ventricular function: a multi-centre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. Eur Heart J 26: 607–616

    Article  PubMed  Google Scholar 

  108. Wagner A et al. (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361: 374–379

    Article  PubMed  Google Scholar 

  109. Leobon B et al. (2003) Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 100: 7808–7811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Makkar RR et al. (2003) Stem dell therapy for myocardial repair. Is it arrhythmogenic? J Am Coll Cardiol 42: 2070–2072

    Article  PubMed  Google Scholar 

  111. Aicher A et al. (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labelling. Circulation 107: 2134–2139

    Article  PubMed  Google Scholar 

  112. Barbash IM et al. (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108: 863–868

    Article  PubMed  Google Scholar 

  113. Vulliet PR et al. (2004) Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 363: 783–784

    Article  PubMed  Google Scholar 

  114. Yoon YS et al. (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109: 3154–3157

    Article  PubMed  Google Scholar 

  115. Yoo KJ et al. (2000) Heart cell transplantation improves heart function in dilated cardiomyopathic hamsters. Circulation 102 (Suppl 3): III204–III209

    CAS  PubMed  Google Scholar 

  116. Mocini D et al. (2005) Stem cell therapy for cardiac arrhythmias. Ital Heart J 6: 267–271

    PubMed  Google Scholar 

  117. Kawamoto A et al. (2004) Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation 110: 1398–1405

    Article  CAS  PubMed  Google Scholar 

  118. Kravchenko J et al. (2005) Endothelial progenitor cell therapy for atherosclerosis: the philosopher's stone for an aging population? Sci Aging Knowledge Environ 25: [10.1126/sageke.2005.25.pe18]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Fernández-Avilés.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, P., Román, J., Villa, A. et al. Contemplating the bright future of stem cell therapy for cardiovascular disease. Nat Rev Cardiol 3 (Suppl 1), S138–S151 (2006). https://doi.org/10.1038/ncpcardio0456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0456

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing