Article | Open

Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates

  • Nature Communications 7, Article number: 11536 (2016)
  • doi:10.1038/ncomms11536
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on ‘consumed biomass’, which is an approximation to the biogeochemically correct ‘burnt carbon’ approach. Here we show that applying the ‘consumed biomass’ approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the ‘burnt carbon’ approach. The required correction is significant and represents 9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the ‘burnt carbon’ approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon.

Introduction

Vegetation fires have existed in the Earth system since shortly after the appearance of terrestrial vegetation 420 million years ago1,2 and are a necessary disturbance for maintaining some ecosystems3. They also have a range of anthropogenically deleterious consequences such as damage to assets and infrastructure, loss of life, as well as degrading ambient air quality leading to negative impacts on human health4. Vegetation fires also perturb global biogeochemical cycles, with impacts on climate4,5,6. It is estimated that over the period 2001–2010, global vegetation fires emitted an average of 2.5 Pg per year (1 Pg=1 × 1015 g) of carbon to the atmosphere7, equivalent to 30% of annual-averaged anthropogenic emissions from fossil fuel combustion over 2004–2013 (ref. 8). Changes in global vegetation fire regimes, such as an increased fire frequency, have been predicted from modelling studies undertaken in the northwest of the United States9, as well as Mediterranean-type ecosystems under a warmer and wetter future climate10. Furthermore, charcoal records from boreal forests suggest that current vegetation fire frequencies are at their highest level in the last 3,000 years11 and predictions of a future increase in fire intensity have been made12. Given the global impact of vegetation fires on ecosystems and climate, accurate accounting methods are required to estimate their greenhouse gas emissions, to characterize their climate forcing and to properly design carbon mitigation strategies involving the management of vegetation.

Using the Intergovernmental Panel on Climate Change (IPCC) methodology13, total emissions from fire are calculated using the product of activity and an emissions factor (EF). Activity refers to a process occurring in the environment that leads to emissions (for example, fire) and an EF is thus defined as emissions per unit activity.

When calculating an EF from fire, the principle of a carbon mass balance (CMB) is invoked, with the technique ultimately being attributed to either Ward et al.14 or Radke et al.15. While the partitioning of the chemical species of interest and total emitted carbon into reference-gas-normalized emission ratios is consistently applied in vegetation fire emission studies16,17,18, there have been inconsistencies in the treatment of vegetation exposed to fire but not emitted to the atmosphere (that is, post-burn combustion residue).

In this article, we show that neglecting changes in the post-burn carbon content (CCpost, %) leads to an upward bias in emission estimates for the ‘consumed biomass’ CMB interpretation compared with the ‘burnt carbon’ approach. We therefore recommend that vegetation fire studies employ the ‘burnt carbon’ approach to more accurately estimate emissions, by taking into account the change in carbon content from post-fire residues.

Results

Definitional preliminaries

Following the definitions from Surawski et al.16, we define ‘burnt’ as fuel that has been thermally altered as a result of exposure to fire and either emitted to the atmosphere or left in the post-fire residue; and we define ‘consumed’ as that component of the fuel that is emitted to the atmosphere as a result of exposure to fire. We follow the definition of Keane et al.19 that ‘fuels are the dead and live biomass available for fire ignition and combustion’.

The basis of biased emission estimates

Since the publication of the CMB technique15, the method has been interpreted and applied in two different ways in the vegetation fire emission literature17,20. The first is the ‘consumed biomass’ approach (Fig. 1, top pathway), which is based on the simplifying assumption that all burnt carbon is volatilized and emitted. We demonstrate below that this assumption is incorrect and leads to biased results. The second method, the ‘burnt carbon’ approach, additionally takes into account changes between the pre- and post-fire carbon content of the fuel and is unbiased (Fig. 1, bottom pathway).

Figure 1: A diagrammatic illustration of how biased emission estimates from fire occur.
Figure 1

A schematic of the two different ways the carbon mass balance technique has been interpreted and applied in vegetation fire emission studies. Cpre and Bpre denote pre-fire carbon and biomass fuel, CCpre and CCpost represent pre- and post-fire carbon content, and Cpost and Bpost denote post-fire carbon and biomass fuel, respectively. ΣCemit/Cfuel represents the correction factor required for the burnt carbon accounting framework. Emissionsapprox represents approximate emissions estimated using the consumed biomass approach and Emissionscorrect represents emission estimates using the burnt carbon approach. EF denotes emissions factor with the estimate depending on what accounting framework is used (that is, consumed biomass or burnt carbon).

Both approaches have the same starting point, which is the amount of biomass fuel before burning (Bpre, t ha−1 on a dry matter basis) and its carbon content (CCpre, %). In the absence of measurements of fuel carbon content, a carbon content of 50% is commonly assumed18, although a value of 45% has also been suggested21. The pre-burning carbon load (t ha−1 on a dry matter basis) can then be calculated from estimates of both Bpre and CCpre (Cpre=Bpre × CCpre). Both interpretations of the CMB technique rely on estimates of biomass fuel after burning (Bpost) to enable calculation of a combustion factor (CF=(BpreBpost)/Bpre) (ref. 13). It is the subsequent analysis where the two interpretations of the CMB technique diverge and bias is introduced.

The ‘consumed biomass’ approach is more commonly applied21,22,23,24,25 (and references therein) and does not require any further measurements after Bpost has been calculated. In this case, estimation of an EF is based on consumed biomass only and reports EFs as the mass of a chemical species emitted per kilogram of dry fuel consumed. The ‘burnt carbon’ approach is far less commonly applied16,17,26,27 and requires an estimate of the post-burning carbon content for burnt fuel that is not emitted to the atmosphere. Estimating CCpost enables the post-fire carbon load (Cpost=Bpost × CCpost) to be calculated. This in turn enables burnt carbon to be partitioned between that emitted to the atmosphere (ΣCemit=CpreCpost) and that remaining as post-burn combustion residue (Cpost, for example, charred material enriched in carbon; Fig. 1). Consequently, the second interpretation of the CMB technique is based on ‘burnt carbon’ involving either atmospheric emission or resulting in an ashed or charred residue after exposure to fire (Cpost in Fig. 1) with both of these ultimate fates being represented as a percentage of burnt carbon.

The explicit and incorrect assumption of the ‘consumed biomass’ CMB method (top pathway in Fig. 1) is that all burnt carbon is volatilized and emitted to the atmosphere20,25,28. In contrast, the ‘burnt carbon’ CMB method (bottom pathway in Fig. 1) correctly accounts for burnt carbon remaining as a residue after a vegetation fire. Many vegetation fire research studies have shown that not all burnt fuel carbon is volatilized and emitted to the atmosphere17,26,29,30,31,32,33,34. The need to take into account the full-carbon budget of vegetation fires has been raised previously21,35,36, yet vegetation fire emission studies generally do not measure CCpost (with CCpost>CCpre for charred post-fire material30,31,34), which precludes use of the ‘burnt carbon’ CMB method and this leads to an overestimation bias of emissions for the ‘consumed biomass’ method relative to the ‘burnt carbon’ method.

To avoid this bias with the ‘consumed biomass’ CMB approach, it is necessary to multiply its EF by the fraction of burnt fuel carbon emitted to the atmosphere, ΣCemit/Cfuel (ref. 16), where ΣCemit is the mass of emitted carbon and Cfuel is the mass of fuel carbon burnt (Supplementary Table 1). Only if all burnt fuel carbon is emitted to the atmosphere (that is, ΣCemit/Cfuel=1, which is very unlikely to be achieved in a real fire), would these two methods agree without inclusion of the correction factor. Otherwise, estimates of emissions using the ‘consumed biomass’ approach will be overestimated (that is, relative to the ‘burnt’ carbon approach), represented by the difference between complete volatilization and emission of carbon to the atmosphere, and the true fraction of carbon volatilized and emitted to the atmosphere (ɛ=1−ΣCemit/Cfuel).

Quantification of the correction factor

To quantify the magnitude of this overestimation, we obtained empirical estimates from the literature17,29,30,31,32,33,34 (Supplementary Table 1) of the fraction of burnt fuel carbon emitted to the atmosphere or the fraction of burnt carbon retained in post-burn residues (and in one case both emissions and residues), to determine the likely values of ɛ in various vegetation types around the globe. ɛ values range from a minimum of 0.4% in a savanna ecosystem34 to a maximum of 50% in a temperate forest34. On the basis of 40 records (Fig. 2), the median ɛ value is 4.0% with the interquartile range (25th–75th percentiles) spanning the interval 2.0–12.0%.

Figure 2: A box plot of the global ɛ value distribution based on our literature review.
Figure 2

The ɛ value is the percentage of carbon exposed to fire (that is, burnt) that remains as a post-fire residue, based on 40 records17,29,30,31,32,33,34 (Supplementary Table 1). The five-number summary for ɛ is: minimum=0.4%, 25th percentile=1.98%, median=3.95%, 75th percentile=12.0%, maximum=50% (the single outlier is shown as an open circle). The interquartile range (IQR)=10.0.

Discussion

In terms of estimating global emissions from vegetation fires, the widely used Global Fire Emissions Database22, and others such as the Fire INventory from NCAR23, and IPCC good practice guidelines for national greenhouse gas inventories13 rely on the ‘consumed biomass’ approach for reporting EFs. If we use the median ɛ value of 4.0% and apply this to the globally averaged annual carbon emissions from 2001 to 2010 of 2.5 Pg (ref. 7), the overestimation of emissions (that is, for the ‘consumed biomass’ approach compared with the ‘burnt carbon’ approach) amounts to 100 Tg (1 Tg=1 × 1012 g) of carbon per year, with an uncertainty range (25th–75th percentiles) of 50–300 Tg. Furthermore, the ‘consumed biomass’ approach (which assumes 100% volatilization of burnt carbon) precludes the ability to quantify the efficacy of any direct management of fire for post-fire residues for mitigating net vegetation fire emissions, such as the preferential firing of vegetation fuels for enhanced charred post-fire residues to increase sequestration in the pedosphere.

Altogether, the potential for a 50–300-Tg error in annual global vegetation fire emission estimates highlights that vegetation fire research should be conducted in a more coordinated manner1,37, to ensure the complete biogeochemistry of fire events are adequately represented. Despite recommendations in the literature21, measurements of CCpost are not routinely made in vegetation fire emission studies. This prevents ΣCemit/Cfuel from being calculated, leading to an overestimation of emissions for the ‘consumed biomass’ approach relative to the ‘burnt carbon’ approach. Furthermore, this overestimation means that the amount of carbon in burnt residues needs to be adjusted to maintain global carbon mass balance from vegetation fires. Apart from improving global vegetation fire emission estimates, it is envisaged that global studies of CCpost will broaden our understanding of ecosystem carbon fluxes due to fire, including the potential for managing burnt carbon residues to enhance ecosystem carbon storage and to spawn research efforts exploring the post-fire fate of carbon34,35,36,38. In particular, such efforts should estimate the global ɛ value with different fire behaviours and ecosystem types, as only a coarse estimate was obtained using current estimates in the literature. In conducting such research, however, it is important to realize that greater uncertainties are present for burnt areas, fuel load and combustion factors from global vegetation fires39.

Methods

EF reporting methods

Examples of studies that have adopted the approximate ‘consumed biomass’ approach to emissions accounting from vegetation fires are ubiquitous21,22,23,24,25 (and references therein).

Examples of studies exploring the more complete ‘burnt carbon’ approach are far less common16,17,26,27.

EF reporting fundamentals

Estimating emissions from vegetation fires involves multiplying the amount of fuel consumed6 by an EF (ref. 24). The amount of fuel consumed is obtained by multiplying the area burnt (A) by the fuel load (B) and a combustion factor (CF). The basis of the CMB technique is that for the dominant carbonaceous species emitted in a plume (usually CO2, CO and CH4), excess mixing ratios (that is, molar concentrations above background) are measured. Then, emission ratios are calculated by normalizing (that is, dividing) the excess mixing ratio of the species of interest to the excess mixing ratio of a reference gas, or in some cases the sum of the excess mixing ratios of total emitted carbon40. An EF is then obtained by dividing the emission ratio for the species of interest by that of the emitted and detected carbon

Conversion of the consumed biomass method to burnt carbon

Using the ‘consumed biomass’ interpretation of an EF (an approximation that assumes that all fuel carbon is volatilized and emitted to the atmosphere), emissions for the Xth carbon-based species (EX) can be calculated by multiplying the area burnt, the fuel load and the combustion and EFs together via:

In equation (1), EFX, reported on a kg species X per kg consumed basis, is defined by18:

where UC is a conversion factor used to convert between atomic and molar masses, CX is the number of moles of species X and CT is the total number of carbon moles emitted to the atmosphere.

Assuming that CO2 is used as a reference gas for the normalization of emission ratios (that is, other choices include CO or CH4 (ref. 16) or total emitted carbon40), CX/CT is given by:

where ΔCX represents the difference between the plume and ambient mixing ratios for species X, and NCj represents the number of carbon atoms in species j, with summation being performed across the total number of carbon species N.

Alternatively, using the ‘burnt carbon’ interpretation, emissions for the Xth (that is, carbon based) species are given by:

In equation (4), assuming again that CO2 is used as a reference gas, EFX (defined as the percentage of burnt carbon emitted as species X) is defined by17:

where ΣCemit is the mass of fuel carbon emitted to the atmosphere from j different carbon species, and Cfuel is the mass of fuel carbon burnt.

Note that:

Consequently, the only way that the equation (1) can equal equation (4) is if equation (2) is multiplied by ΣCemit/Cfuel (ref. 16). The presentation here focused on carbon-based species, but similar calculations can be performed for nitrogen-based species (such as N2O).

Global estimates of the correction factor

A broad literature search was conducted using the Web of Science, Scopus and Google Scholar databases to parameterize this quantity. Literature searches were motivated by listings of major field-based vegetation fire emission campaigns commencing in the 1980s and ending with the Fire Lab at Missoula Experiments (Supplementary Table 1). On the basis of our literature search, in Supplementary Table 1, we parameterise the global ɛ value for different ecosystems and fuel types, as well as for different fire types, fuel sampling methods, carbon residue sampling methods and carbon residue quantification methods. A statistical summary of our ɛ value database is provided in Fig. 2 and its caption.

Additional information

How to cite this article: Surawski, N. C. et al. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates. Nat. Commun. 7:11536 doi: 10.1038/ncomms11536 (2016).

References

  1. 1.

    et al. Fire in the Earth system. Science 324, 481–484 (2009).

  2. 2.

    & The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl Acad. Sci. USA 103, 10861–10865 (2006).

  3. 3.

    et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).

  4. 4.

    et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).

  5. 5.

    , , , & Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS. Nature 282, 253–256 (1979).

  6. 6.

    & Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247 (1980).

  7. 7.

    , , , & Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 117, G04012 (2012).

  8. 8.

    et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 47–85 (2015).

  9. 9.

    , , , & Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl Acad. Sci. USA 108, 13165–13170 (2011).

  10. 10.

    , , & Climate change-induced shifts in fire for Mediterranean ecosystems. Global Ecol. Biogeogr. 22, 1118–1129 (2013).

  11. 11.

    et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl Acad. Sci. USA 110, 13055–13060 (2013).

  12. 12.

    et al. Global wildland fire season severity in the 21st century. For. Ecol. Manage. 294, 54–61 (2013).

  13. 13.

    IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4, Ch. 2 (IGES, 2006).

  14. 14.

    et al. in 75th Annual Meeting of the Air Pollution Control Association New Orleans, Louisiana, (1982).

  15. 15.

    , , , & in Aerosols and Climate (eds Hobbs, P. V. & Patrick McCormick, M.) 411–422 (A. Deepak Publishing, 1988).

  16. 16.

    , , , & Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmos. Chem. Phys. 15, 5259–5273 (2015).

  17. 17.

    , & Trace gas emissions from biomass burning in tropical Australian savannas. J. Geophys. Res. 99, 16441–16456 (1994).

  18. 18.

    et al. Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy. J. Geophys. Res. 104, 30109–30125 (1999).

  19. 19.

    Describing wildland surface fuel loading for fire management: a review of approaches, methods and systems. Int. J. Wildland Fire 22, 51–62 (2013).

  20. 20.

    , & Airborne measurements of gases and particles from an Alaskan wildfire. J. Geophys. Res. 98, 14873–14882 (1993).

  21. 21.

    & Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15, 955–966 (2001).

  22. 22.

    et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

  23. 23.

    et al. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 4, 625–641 (2011).

  24. 24.

    et al. Smoke and fire characteristics for cerrado and deforestation burns in Brazil - BASE-B experiment. J. Geophys. Res. 97, 14601–14619 (1992).

  25. 25.

    et al. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072 (2011).

  26. 26.

    et al. in Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications (ed. Levine, J. S.) 289–304 (The MIT Press, 1991).

  27. 27.

    , , & Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases. Nature 346, 552–554 (1990).

  28. 28.

    , , , & Trace gas emissions from the production and use of domestic biofuels in Zambia measured by open-path Fourier transform infrared spectroscopy. J. Geophys. Res. 108, 8469 (2003).

  29. 29.

    & Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem. Cycles 9, 491–501 (1995).

  30. 30.

    et al. Black carbon formation by savanna fires: Measurements and implications for the global carbon cycle. J. Geophys. Res. 101, 23651–23655 (1996).

  31. 31.

    , & Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Enviro. 370, 190–206 (2006).

  32. 32.

    et al. Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications. Int. J. Wildland Fire 18, 1–18 (2009).

  33. 33.

    et al. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition. Biogeosciences 12, 1849–1863 (2015).

  34. 34.

    , , & Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Global Change Biol. 21, 1621–1633 (2015).

  35. 35.

    , , , & The pyrogenic carbon cycle. Ann. Rev. Earth Planet. Sci. 43, 9.1–9.26 (2015).

  36. 36.

    et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biol. 21, 1–16 (2015a).

  37. 37.

    Problems, paradoxes, paradigms: triangulating fire research. Int. J. Wildland Fire 16, 271–276 (2007).

  38. 38.

    Regulation of atmospheric carbon dioxide by vegetation fires. Clim. Res. 59, 125–133 (2014).

  39. 39.

    Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. 118, 5380–5552 (2013).

  40. 40.

    et al. Direct measurements of the seasonality of emission factors from savanna fires in northern Australia. J. Geophys. Res. 117, D20305 (2012).

Download references

Acknowledgements

We thank M. Battaglia and S. Eady for their support of this project. We thank Dale Hurst and Pep Canadell for reviewing a previous draft. We dedicate this paper to the memory of Professor Mike Raupach who made seminal contributions to carbon cycle research.

Author information

Author notes

    • N. C. Surawski

    Present address: Energy, Environment and Water Research Center (EEWRC), The Cyprus Institute, PO Box 27456, Nicosia 2121, Cyprus

    • P. J. Polglase

    Present address: Fenner School of Environment & Society, Australian National University, Linnaeus Way, Acton, Australian Capital Territory 2601, Australia

Affiliations

  1. CSIRO Agriculture, GPO Box 1700, Canberra, Acton 2601, Australian Capital Territory, Australia

    • N. C. Surawski
  2. CSIRO Land and Water, GPO Box 1700, Canberra, Acton 2601, Australian Capital Territory, Australia

    • A. L. Sullivan
    • , S. H. Roxburgh
    •  & P. J. Polglase
  3. CSIRO Oceans and Atmosphere, 107–121 Station Street, Aspendale, Victoria 3195, Australia

    • C.P. Mick Meyer

Authors

  1. Search for N. C. Surawski in:

  2. Search for A. L. Sullivan in:

  3. Search for S. H. Roxburgh in:

  4. Search for C.P. Mick Meyer in:

  5. Search for P. J. Polglase in:

Contributions

A.L.S. suggested undertaking this project of highlighting different interpretations of the CMB technique. S.H.R. suggested a graphical representation of different interpretations of the CMB technique. N.C.S. prepared Figs 1 and 2 and Supplementary Table 1, and wrote the manuscript with contributions from all co-authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to N. C. Surawski.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Table 1 and Supplementary References

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Creative Commons BYThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/