Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Albumins and their processing machinery are hijacked for cyclic peptides in sunflower

Abstract

The cyclic peptide sunflower trypsin inhibitor 1 (SFTI-1) blocks trypsin and is a promising drug lead and protein engineering scaffold. We show that SFTI-1 and the newfound SFT-L1 are buried within PawS1 and PawS2, precursors for seed storage protein albumins. Proalbumins are matured by asparaginyl endopeptidase, which we show is required to liberate both ends of SFTI-1 as well as to mature PawS1 albumin. Thus, these peptides emerge from within an albumin precursor by the action of albumin's own processing enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sunflower cyclic peptides and their preproalbumin precursors.
Figure 2: Studies using sunflower PawS1 transgenes in Arabidopsis and a model for SFTI-1 biosynthesis.

Similar content being viewed by others

Accession codes

Accessions

Biological Magnetic Resonance Data Bank

NCBI Reference Sequence

Protein Data Bank

References

  1. Luckett, S. et al. J. Mol. Biol. 290, 525–533 (1999).

    Article  CAS  Google Scholar 

  2. Korsinczky, M.L. et al. J. Mol. Biol. 311, 579–591 (2001).

    Article  CAS  Google Scholar 

  3. Daly, N.L. et al. J. Biol. Chem. 281, 23668–23675 (2006).

    Article  CAS  Google Scholar 

  4. Long, Y.Q. et al. Bioorg. Med. Chem. Lett. 11, 2515–2519 (2001).

    Article  CAS  Google Scholar 

  5. Swedberg, J.E. et al. Chem. Biol. 16, 633–643 (2009).

    Article  CAS  Google Scholar 

  6. Mulvenna, J.P., Foley, F.M. & Craik, D.J. J. Biol. Chem. 280, 32245–32253 (2005).

    Article  CAS  Google Scholar 

  7. Shewry, P. & Pandya, M. The 2S Albumin Storage Proteins. in Seed Proteins (eds. Shewry, P. & Casey, R.) 883 (Kluwer, Dordrecht, 1999).

  8. Panero, J. XXVI. Tribe Heliantheae. in Flowering Plants, Eudicots: Asterales Vol. 8 (eds. Kadereit, J. & Jeffrey, C.) 635 (Springer, New York, 2007).

  9. Hara-Hishimura, I., Takeuchi, Y., Inoue, K. & Nishimura, M. Plant J. 4, 793–800 (1993).

    Article  CAS  Google Scholar 

  10. Gruis, D., Schulze, J. & Jung, R. Plant Cell 16, 270–290 (2004).

    Article  CAS  Google Scholar 

  11. Shimada, T. et al. J. Biol. Chem. 278, 32292–32299 (2003).

    Article  CAS  Google Scholar 

  12. Hiraiwa, N., Nishimura, M. & Hara-Nishimura, I. FEBS Lett. 447, 213–216 (1999).

    Article  CAS  Google Scholar 

  13. Kuroyanagi, M. et al. J. Biol. Chem. 280, 32914–32920 (2005).

    Article  CAS  Google Scholar 

  14. Saska, I. et al. J. Biol. Chem. 282, 29721–29728 (2007).

    Article  CAS  Google Scholar 

  15. Jennings, C. et al. Proc. Natl. Acad. Sci. USA 98, 10614–10619 (2001).

    Article  CAS  Google Scholar 

  16. Gillon, A.D. et al. Plant J. 53, 505–515 (2008).

    Article  CAS  Google Scholar 

  17. Robinson, J.A. Acc. Chem. Res. 41, 1278–1288 (2008).

    Article  CAS  Google Scholar 

  18. D'Hondt, K. et al. J. Biol. Chem. 268, 20884–20891 (1993).

    CAS  PubMed  Google Scholar 

  19. Hiraiwa, N., Kondo, M., Nishimura, M. & Hara-Nishimura, I. Eur. J. Biochem. 246, 133–141 (1997).

    Article  CAS  Google Scholar 

  20. Otegui, M.S . et al. Plant Cell 18, 2567–2581 (2006).

    Article  CAS  Google Scholar 

  21. Autelitano, D.J. et al. Drug Discov. Today 11, 306–314 (2006).

    Article  CAS  Google Scholar 

  22. Hartl, M., Giri, A.P., Kaur, H. & Baldwin, I.T. Plant Cell, 22, 4158–4175 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank staff at the Arizona Genomics Institute (University of Arizona) for providing Helianthus cDNA clones, the Compositae Genome Project website (http://cgpdb.ucdavis.edu/) that was supported by the United States Department of Agriculture Initiative for Future Agriculture and Food Systems program and National Science Foundation Plant Genome Program for EST data, S. Dillon (Australian Plant Genetic Resource Information Service) for Helianthus seeds, I. Hara-Nishimura (University of Kyoto) for aep null seeds, A. Argyros for technical assistance, H. Schirra (University of Queensland) for providing the structural image used in Supplementary Figure 1 as well as R. Jung, M. Anderson, D. Ortiz-Barrientos and S. Balasubramanian for comments. D.J.C. is a National Health and Medical Research Council Professorial Fellow. J.S.M. is an Australian Research Council Queen Elizabeth II Fellow (DP0879133) and The John S. Mattick Fellow. N.L.D. is a Queensland Smart State Fellow.

Author information

Authors and Affiliations

Authors

Contributions

J.S.M., N.L.D. and D.J.C. conceived the study; J.S.M., A.H.C., A.G.E. and E.J.M. performed the experiments, N.L.D. obtained the SFT-L1 structure; M.L.C. and A.J. performed MS studies; J.S.M., N.L.D. and M.L.C. analyzed the data; J.S.M. and D.J.C. wrote the paper.

Corresponding authors

Correspondence to Joshua S Mylne or David J Craik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–13 and Supplementary Tables 1–8 (PDF 6835 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mylne, J., Colgrave, M., Daly, N. et al. Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nat Chem Biol 7, 257–259 (2011). https://doi.org/10.1038/nchembio.542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.542

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing