Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A two-step sulfation in antibiotic biosynthesis requires a type III polyketide synthase

Abstract

Caprazamycins (CPZs) belong to a group of liponucleoside antibiotics inhibiting the bacterial MraY translocase, an essential enzyme involved in peptidoglycan biosynthesis. We have recently identified analogs that are decorated with a sulfate group at the 2″-hydroxy of the aminoribosyl moiety, and we now report an unprecedented two-step sulfation mechanism during the biosynthesis of CPZs. A type III polyketide synthase (PKS) known as Cpz6 is used in the biosynthesis of a group of new triketide pyrones that are subsequently sulfated by an unusual 3′-phosphoadenosine-5′-phosphosulfate (PAPS)-dependent sulfotransferase (Cpz8) to yield phenolic sulfate esters, which serve as sulfate donors for a PAPS-independent arylsulfate sulfotransferase (Cpz4) to generate sulfated CPZs. This finding is to our knowledge the first demonstration of genuine sulfate donors for an arylsulfate sulfotransferase and the first report of a type III PKS to generate a chemical reagent in bacterial sulfate metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of CPZs and sulfated CPZs, and genetic organization of the CPZ biosynthetic gene cluster (cpz9-cpz31).
Figure 2: HPLC profiles of S. coelicolor M512 mutant extracts.
Figure 3: Characterization of Cpz8 as PAPS-dependent sulfotransferase.
Figure 4: HPLC profiles of S. coelicolor M145/Δsco7221 mutant extracts.
Figure 5: Identification and structures of presulficidins.
Figure 6: In vitro analysis of the CPZ two step sulfation mechanism.

Similar content being viewed by others

References

  1. Chapman, E., Best, M.D., Hanson, S.R. & Wong, C.H. Sulfotransferases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Edn Engl. 43, 3526–3548 (2004).

    Article  CAS  Google Scholar 

  2. Malojčić, G. & Glockshuber, R. The PAPS-independent aryl sulfotransferase and the alternative disulfide bond formation system in pathogenic bacteria. Antioxid. Redox Signal. 13, 1247–1259 (2010).

    Article  Google Scholar 

  3. Kobashi, K., Fukaya, Y., Kim, D.H., Akao, T. & Takebe, S. A novel type of aryl sulfotransferase obtained from an anaerobic bacterium of human intestine. Arch. Biochem. Biophys. 245, 537–539 (1986).

    Article  CAS  Google Scholar 

  4. Kaysser, L. et al. Identification and manipulation of the caprazamycin gene cluster lead to new simplified liponucleoside antibiotics and give insights into the biosynthetic pathway. J. Biol. Chem. 284, 14987–14996 (2009).

    Article  CAS  Google Scholar 

  5. Igarashi, M. et al. Caprazamycin B, a novel anti-tuberculosis antibiotic, from Streptomyces sp. J. Antibiot. (Tokyo) 56, 580–583 (2003).

    Article  Google Scholar 

  6. Kaysser, L., Siebenberg, S., Kammerer, B. & Gust, B. Analysis of the liposidomycin gene cluster leads to the identification of new caprazamycin derivatives. ChemBioChem 11, 191–196 (2010).

    Article  CAS  Google Scholar 

  7. Kaysser, L. et al. A new arylsulfate sulfotransferase involved in liponucleoside antibiotic biosynthesis in streptomycetes. J. Biol. Chem. 285, 12684–12694 (2010).

    Article  CAS  Google Scholar 

  8. Gust, B., Challis, G.L., Fowler, K., Kieser, T. & Chater, K.F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100, 1541–1546 (2003).

    Article  CAS  Google Scholar 

  9. Kelley, L.A. & Sternberg, M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  Google Scholar 

  10. Moon, A.F. et al. Structural analysis of the sulfotransferase (3-O-sulfotransferase isoform 3) involved in the biosynthesis of an entry receptor for herpes simplex virus 1. J. Biol. Chem. 279, 45185–45193 (2004).

    Article  CAS  Google Scholar 

  11. Kakuta, Y., Pedersen, L.G., Pedersen, L.C. & Negishi, M. Conserved structural motifs in the sulfotransferase family. Trends Biochem. Sci. 23, 129–130 (1998).

    Article  CAS  Google Scholar 

  12. Hatzios, S.K., Iavarone, A.T. & Bertozzi, C.R. Rv2131c from Mycobacterium tuberculosis is a CysQ 3′-phosphoadenosine-5′-phosphatase. Biochemistry 47, 5823–5831 (2008).

    Article  CAS  Google Scholar 

  13. Hatzios, S.K. et al. The Mycobacterium tuberculosis CysQ phosphatase modulates the biosynthesis of sulfated glycolipids and bacterial growth. Bioorg. Med. Chem. Lett. 21, 4956–4959 (2011).

    Article  CAS  Google Scholar 

  14. Mechold, U., Ogryzko, V., Ngo, S. & Danchin, A. Oligoribonuclease is a common downstream target of lithium-induced pAp accumulation in Escherichia coli and human cells. Nucleic Acids Res. 34, 2364–2373 (2006).

    Article  CAS  Google Scholar 

  15. Pi, N. et al. Kinetic measurements and mechanism determination of Stf0 sulfotransferase using mass spectrometry. Anal. Biochem. 341, 94–104 (2005).

    Article  CAS  Google Scholar 

  16. Song, L. et al. Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J. Am. Chem. Soc. 128, 14754–14755 (2006).

    Article  CAS  Google Scholar 

  17. Funabashi, M., Funa, N. & Horinouchi, S. Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus. J. Biol. Chem. 283, 13983–13991 (2008).

    Article  CAS  Google Scholar 

  18. Surup, F. et al. The iromycins, a new family of pyridone metabolites from Streptomyces sp. I. Structure, NOS inhibitory activity, and biosynthesis. J. Org. Chem. 72, 5085–5090 (2007).

    Article  CAS  Google Scholar 

  19. Funabashi, M. et al. The biosynthesis of liposidomycin-like A-90289 antibiotics featuring a new type of sulfotransferase. ChemBioChem 11, 184–190 (2010).

    Article  CAS  Google Scholar 

  20. Moore, B.S. et al. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J. Nat. Prod. 65, 1956–1962 (2002).

    Article  CAS  Google Scholar 

  21. Austin, M.B. & Noel, J.P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).

    Article  CAS  Google Scholar 

  22. Watanabe, K., Praseuth, A.P. & Wang, C.C. A comprehensive and engaging overview of the type III family of polyketide synthases. Curr. Opin. Chem. Biol. 11, 279–286 (2007).

    Article  CAS  Google Scholar 

  23. Abe, I. & Morita, H. Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat. Prod. Rep. 27, 809–838 (2010).

    Article  CAS  Google Scholar 

  24. Yu, D., Xu, F., Zeng, J. & Zhan, J. Type III polyketide synthases in natural product biosynthesis. IUBMB Life 64, 285–295 (2012).

    Article  CAS  Google Scholar 

  25. Katsuyama, Y. & Ohnishi, Y. Type III polyketide synthases in microorganisms. Methods Enzymol. 515, 359–377 (2012).

    Article  CAS  Google Scholar 

  26. Funa, N. et al. A new pathway for polyketide synthesis in microorganisms. Nature 400, 897–899 (1999).

    Article  CAS  Google Scholar 

  27. Funa, N., Ozawa, H., Hirata, A. & Horinouchi, S. Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc. Natl. Acad. Sci. USA 103, 6356–6361 (2006).

    Article  CAS  Google Scholar 

  28. Aoki, Y., Matsumoto, D., Kawaide, H. & Natsume, M. Physiological role of germicidins in spore germination and hyphal elongation in Streptomyces coelicolor A3(2). J. Antibiot. (Tokyo) 64, 607–611 (2011).

    Article  CAS  Google Scholar 

  29. Flett, F., Mersinias, V. & Smith, C.P. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155, 223–229 (1997).

    Article  CAS  Google Scholar 

  30. Doumith, M. et al. Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Mol. Gen. Genet. 264, 477–485 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Challis (University of Warwick) for providing S. coelicolor M145/Δsco7221 and germicidin A. We are grateful to R. Machinek and C. Zolke (Institute of Organic Chemistry, University of Göttingen) for carrying out NMR measurements. We also thank A. Jones for reviewing the manuscript. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB766) to K.E. and X.T., a grant from the Graduate School 'Promotionsverbund Antibakterielle Wirkstoffe' of the University of Tuebingen to X.T. and by the European Commission (IP005224, ActinoGen) to L.K.

Author information

Authors and Affiliations

Authors

Contributions

X.T., L.K. and B.G. designed the research. X.T. and L.K. generated and analyzed the mutants. X.T. performed the biochemical experiments and purified presulficidins. X.T. and K.E. purified hydroxyacylcaprazol and purified the proteins. X.T., K.E., L.K. and B.G. analyzed the data. A.K. performed MS analysis. S.G. elucidated the structure of presulficidins. X.T., S.G. and B.G. wrote the manuscript. B.G. supervised the project.

Corresponding author

Correspondence to Bertolt Gust.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–15, Supplementary Note and Supplementary Tables 1–3. (PDF 2162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, X., Eitel, K., Kaysser, L. et al. A two-step sulfation in antibiotic biosynthesis requires a type III polyketide synthase. Nat Chem Biol 9, 610–615 (2013). https://doi.org/10.1038/nchembio.1310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1310

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology