Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel

Abstract

Perfringolysin O (PFO), a bacterial cholesterol-dependent cytolysin, binds a mammalian cell membrane, oligomerizes into a circular prepore complex (PPC) and forms a 250-Å transmembrane β-barrel pore in the cell membrane. Each PFO monomer has two sets of three short α-helices that unfold and ultimately refold into two transmembrane β-hairpin (TMH) components of the membrane-embedded β-barrel. Interstrand disulfide-bond scanning revealed that β-strands in a fully assembled PFO β-barrel were strictly aligned and tilted at 20° to the membrane perpendicular. In contrast, in a low temperature–trapped PPC intermediate, the TMHs were unfolded and had sufficient freedom of motion to interact transiently with each other, yet the TMHs were not aligned or stably hydrogen bonded. The PFO PPC-to-pore transition therefore converts TMHs in a dynamic folding intermediate far above the membrane into TMHs that are hydrogen bonded to those of adjacent subunits in the bilayer-embedded β-barrel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PFO structure and structural alterations.
Figure 2: Detection of disulfide-bonded PFO dimers in PPC and pore complexes.
Figure 3: β4-β1 crosslinking and β-strand alignment in pore complex.
Figure 4: Dimer formation in PPCs.
Figure 5: Fluorescence-detected changes in TMH environment reveal stages in TMH unfolding and alignment during pore formation.

Similar content being viewed by others

References

  1. Tweten, R.K. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect. Immun. 73, 6199–6209 (2005).

    Article  CAS  Google Scholar 

  2. Hotze, E.M. & Tweten, R.K. Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim. Biophys. Acta 1818, 1028–1038 (2012).

    Article  CAS  Google Scholar 

  3. Rossjohn, J., Feil, S.C., Mckinstry, W.J., Tweten, R.K. & Parker, M.W. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89, 685–692 (1997).

    Article  CAS  Google Scholar 

  4. Ramachandran, R., Heuck, A.P., Tweten, R.K. & Johnson, A.E. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat. Struct. Biol. 9, 823–827 (2002).

    CAS  PubMed  Google Scholar 

  5. Ramachandran, R., Tweten, R.K. & Johnson, A.E. The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc. Natl. Acad. Sci. USA 102, 7139–7144 (2005).

    Article  CAS  Google Scholar 

  6. Czajkowsky, D.M., Hotze, E.M., Shao, Z. & Tweten, R.K. Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane. EMBO J. 23, 3206–3215 (2004).

    Article  CAS  Google Scholar 

  7. Shepard, L.A. et al. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an α-helical to β-sheet transition identified by fluorescence spectroscopy. Biochemistry 37, 14563–14574 (1998).

    Article  CAS  Google Scholar 

  8. Shatursky, O. et al. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99, 293–299 (1999).

    Article  CAS  Google Scholar 

  9. Tilley, S.J., Orlova, E.V., Gibert, R.J.C., Andrew, P.W. & Saibil, H.R. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121, 247–256 (2005).

    Article  CAS  Google Scholar 

  10. Schulz, G.E. The structure of bacterial outer membrane proteins. Biochim. Biophys. Acta 1565, 308–317 (2002).

    Article  CAS  Google Scholar 

  11. Reboul, C.F., Mahmood, K., Whisstock, J.C. & Dunstone, M.A. Predicting giant transmembrane β-barrel architecture. Bioinformatics 28, 1299–1302 (2012).

    Article  CAS  Google Scholar 

  12. Ohno-Iwashita, Y., Iwamoto, M., Ando, S. & Iwashita, S. Effect of lipidic factors on membrane cholesterol topology—mode of binding of θ-toxin to cholesterol in liposomes. Biochim. Biophys. Acta 1109, 81–90 (1992).

    Article  CAS  Google Scholar 

  13. Heuck, A.P., Hotze, E.M., Tweten, R.K. & Johnson, A.E. Mechanism of membrane insertion of a multimeric β-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol. Cell 6, 1233–1242 (2000).

    Article  CAS  Google Scholar 

  14. Nelson, L.D., Johnson, A.E. & London, E. How the interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O–lipid raft interaction. J. Biol. Chem. 283, 4632–4642 (2008).

    Article  CAS  Google Scholar 

  15. Flanagan, J.J., Tweten, R.K., Johnson, A.E. & Heuck, A.P. Cholesterol exposure at the membrane surface is necessary and sufficient to trigger perfringolysin O binding. Biochemistry 48, 3977–3987 (2009).

    Article  CAS  Google Scholar 

  16. Nelson, L.D., Chiantia, S., London, E. & Perfringolysin, O. Association with ordered lipid domains: implications for transmembrane protein raft affinity. Biophys. J. 99, 3255–3263 (2010).

    Article  CAS  Google Scholar 

  17. Farrand, A.J., LaChapelle, S., Hotze, E.M., Johnson, A.E. & Tweten, R.K. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc. Natl. Acad. Sci. USA 107, 4341–4346 (2010).

    Article  CAS  Google Scholar 

  18. Soltani, C.E., Hotze, E.M., Johnson, A.E. & Tweten, R.K. Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin. J. Biol. Chem. 282, 15709–15716 (2007).

    Article  CAS  Google Scholar 

  19. Soltani, C.E., Hotze, E.M., Johnson, A.E. & Tweten, R.K. Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc. Natl. Acad. Sci. USA 104, 20226–20231 (2007).

    Article  CAS  Google Scholar 

  20. Dowd, K.J. & Tweten, R.K. The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog. 8, e1002787 (2012).

    Article  CAS  Google Scholar 

  21. Ramachandran, R., Tweten, R.K. & Johnson, A.E. Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment. Nat. Struct. Mol. Biol. 11, 697–705 (2004).

    Article  CAS  Google Scholar 

  22. Hotze, E.M. et al. Monomer-monomer interactions propagate structural transitions necessary for pore formation by the cholesterol-dependent cytolysins. J. Biol. Chem. 287, 24534–24543 (2012).

    Article  CAS  Google Scholar 

  23. Harrison, P.M. & Sternberg, M.J. Analysis and classification of disulphide connectivity in proteins. The entropic effect of cross-linkage. J. Mol. Biol. 244, 448–463 (1994).

    Article  CAS  Google Scholar 

  24. Shepard, L.A., Shatursky, O., Johnson, A.E. & Tweten, R.K. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane β-hairpins. Biochemistry 39, 10284–10293 (2000).

    Article  CAS  Google Scholar 

  25. Hotze, E.M. et al. Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane β-sheet from a prepore intermediate. J. Biol. Chem. 276, 8261–8268 (2001).

    Article  CAS  Google Scholar 

  26. Heuck, A.P., Tweten, R.K. & Johnson, A.E. Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. J. Biol. Chem. 278, 31218–31225 (2003).

    Article  CAS  Google Scholar 

  27. Wessel, D. & Flügge, U.L. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984).

    Article  CAS  Google Scholar 

  28. Chou, K.C. et al. Energetics of the structure and chain tilting of antiparallel β-barrels in proteins. Proteins 8, 14–22 (1990).

    Article  CAS  Google Scholar 

  29. Sansom, M.S. & Kerr, I.D. Transbilayer pores formed by β-barrels: molecular modeling of pore structures and properties. Biophys. J. 69, 1334–1343 (1995).

    Article  CAS  Google Scholar 

  30. Chou, K.C. & Scheraga, H.A. Origin of the right-handed twist of β-sheets of poly(lVal) chains. Proc. Natl. Acad. Sci. USA 79, 7047–7051 (1982).

    Article  CAS  Google Scholar 

  31. Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115 (1993).

    Article  CAS  Google Scholar 

  32. Johnson, A.E. Fluorescence approaches for determining protein conformations, interactions, and mechanisms at membranes. Traffic 6, 1078–1092 (2005).

    Article  CAS  Google Scholar 

  33. Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    Article  CAS  Google Scholar 

  34. Neupert, W. & Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–749 (2007).

    Article  CAS  Google Scholar 

  35. Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T. & Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628–644 (2009).

    Article  CAS  Google Scholar 

  36. Endo, T. & Yamano, K. Transport of proteins across or into the mitochondrial outer membrane. Biochim. Biophys. Acta 1803, 706–714 (2010).

    Article  CAS  Google Scholar 

  37. Hagan, C.L., Silhavy, T.J. & Kahne, D. β-Barrel membrane protein assembly by the Bam complex. Annu. Rev. Biochem. 80, 189–210 (2011).

    Article  CAS  Google Scholar 

  38. Heuck, A.P., Savva, C.G., Holzenburg, A. & Johnson, A.E. Conformational changes that effect oligomerization and initiate pore formation are triggered throughout perfringolysin O upon binding to cholesterol. J. Biol. Chem. 282, 22629–22637 (2007).

    Article  CAS  Google Scholar 

  39. Ye, J., Esmon, N.L., Esmon, C.T. & Johnson, A.E. The active site of thrombin is altered upon binding to thrombomodulin: Two distinct structural changes are detected by fluorescence, but only one correlates with protein C activation. J. Biol. Chem. 266, 23016–23021 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support was provided by US National Institutes of Health grant AI-37657 (R.K.T.) and Robert A. Welch Foundation Chair grant BE-0017 (A.E.J.).

Author information

Authors and Affiliations

Authors

Contributions

T.K.S. did experiments and contributed to experimental design and writing text, and A.E.J. and R.K.T. contributed to experimental design and writing text.

Corresponding author

Correspondence to Arthur E Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 9231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, T., Tweten, R. & Johnson, A. Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel. Nat Chem Biol 9, 383–389 (2013). https://doi.org/10.1038/nchembio.1228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing