Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis

Abstract

Metal–organic frameworks, built by bridging metal ions with organic linkers, represent a new class of porous hybrid materials with attractive tunability in compositions, structures and functions. In particular, the mild conditions typically employed for their synthesis allow for the functionalization of their building blocks, and thus the rational design of novel materials. Here we demonstrate the systematic design of eight mesoporous chiral metal–organic frameworks, with the framework formula [LCu2(solvent)2] (where L is a chiral tetracarboxylate ligand derived from 1,1′-bi-2-naphthol), that have the same structures but channels of different sizes. Chiral Lewis acid catalysts were generated by postsynthesis functionalization with Ti(OiPr)4, and the resulting materials proved to be highly active asymmetric catalysts for diethylzinc and alkynylzinc additions, which converted aromatic aldehydes into chiral secondary alcohols. The enantioselectivities of these reactions can be modified by tuning the size of the channels, which alters the diffusion rates of the organic substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of a homochiral MOF and its postsynthetic modification (PSM) to give a catalytically active MOF.
Figure 2: Crystal structure of CMOF-1a.
Figure 3: Space-filling models that show packing diagrams of CMOF-1b to -4b.
Figure 4: Characterization of the CMOF series.
Figure 5: CMOF-derived asymmetric catalysts and their framework stability.
Figure 6: Asymmetric diethylzinc and alkynylzinc additions catalysed by the CMOF/Ti(OiPr)4 catalyst.

Similar content being viewed by others

References

  1. Rowsell, J. L. C. & Yaghi, O. M. Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44, 4670–4679 (2005).

    Article  CAS  Google Scholar 

  2. Dinca, M. & Long, J. R. Hydrogen storage in microporous metal–organic frameworks with exposed metal sites. Angew. Chem. Int. Ed. 47, 6766–6779 (2008).

    Article  CAS  Google Scholar 

  3. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  Google Scholar 

  4. Chen, B. et al. A luminescent metal–organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 48, 500–503 (2009).

    Article  CAS  Google Scholar 

  5. Allendorf, M. D. et al. Stress-induced chemical detection using flexible metal–organic frameworks. J. Am. Chem. Soc. 130, 14404–14405 (2008).

    Article  CAS  Google Scholar 

  6. Lan, A. J. et al. A luminescent microporous metal–organic framework for the fast and reversible detection of high explosives. Angew. Chem. Int. Ed. 48, 2334–2338 (2009).

    Article  CAS  Google Scholar 

  7. Lin, W. Metal–organic frameworks for asymmetric catalysis and chiral separations. MRS Bull. 32, 544–548 (2007).

    Article  CAS  Google Scholar 

  8. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  9. Ma, L., Abney, C. & Lin, W. Enantioselective catalysis with homochiral metal–organic frameworks. Chem. Soc. Rev. 38, 1248–1256 (2009).

    Article  CAS  Google Scholar 

  10. Rieter, W. J., Taylor, K. M. L., An, H. Y., Lin, W. L. & Lin, W. Nanoscale metal–organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 128, 9024–9025 (2006).

    Article  CAS  Google Scholar 

  11. Taylor, K. M. L., Jin, A. & Lin, W. Surfactant-assisted synthesis of nanoscale gadolinium metal–organic frameworks for potential multimodal imaging. Angew. Chem. Int. Ed. 47, 7722–7725 (2008).

    Article  CAS  Google Scholar 

  12. Taylor, K. M. L., Rieter, W. J. & Lin, W. Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 130, 14358–14359 (2008).

    Article  CAS  Google Scholar 

  13. Horcajada, P. et al. Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).

    Article  CAS  Google Scholar 

  14. Rieter, W. J., Pott, K. M., Taylor, K. M. L. & Lin, W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 130, 11584–11585 (2008).

    Article  CAS  Google Scholar 

  15. Zhao, X. B. et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal–organic frameworks. Science 306, 1012–1015 (2004).

    Article  CAS  Google Scholar 

  16. Chen, B. et al. Surface interactions and quantum kinetic molecular sieving for H-2 and D-2 adsorption on a mixed metal–organic framework material. J. Am. Chem. Soc. 130, 6411–6423 (2008).

    Article  CAS  Google Scholar 

  17. Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004).

    Article  CAS  Google Scholar 

  18. Ferey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  CAS  Google Scholar 

  19. Koh, K., Wong-Foy, A. G. & Matzger, A. J. A crystalline mesoporous coordination copolymer with high microporosity. Angew. Chem. Int. Ed. 47, 677–680 (2008).

    Article  CAS  Google Scholar 

  20. Seo, J. S. et al. A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000).

    Article  CAS  Google Scholar 

  21. Evans, O. R., Ngo, H. L. & Lin, W. Chiral porous solids based on lamellar lanthanide phosphonates. J. Am. Chem. Soc. 123, 10395–10396 (2001).

    Article  CAS  Google Scholar 

  22. Wu, C.-D., Hu, A., Zhang, L. & Lin, W. Homochiral porous metal–organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 127, 8940–8941 (2005).

    Article  CAS  Google Scholar 

  23. Cho, S. H., Ma, B. Q., Nguyen, S. T., Hupp, J. T. & Albrecht-Schmitt, T. E. A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun. 2563–2565 (2006).

  24. Wu, C.-D. & Lin, W. Heterogeneous asymmetric catalysis with homochiral metal–organic frameworks: network-structure-dependent catalytic activity. Angew. Chem. Int. Ed. 46, 1075–1078 (2007).

    Article  CAS  Google Scholar 

  25. Banerjee, M. et al. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal–organic porous materials. J. Am. Chem. Soc. 131, 7524–7525 (2009).

    Article  CAS  Google Scholar 

  26. Lin, X. et al. High H2 adsorption by coordination-framework materials. Angew. Chem. Int. Ed. 45, 7358–7364 (2006).

    Article  CAS  Google Scholar 

  27. Ma, L., Lee, J. Y., Li, J. & Lin, W. 3D metal–organic frameworks based on elongated tetracarboxylate building blocks for hydrogen storage. Inorg. Chem. 47, 3955–3957 (2008).

    Article  CAS  Google Scholar 

  28. Wu, S., Ma, L., Long, L., Zheng, L. & Lin, W. Three-dimensional metal–organic frameworks based on functionalized tetracarboxylate linkers: synthesis, structures, and gas sorption. Inorg. Chem. 48, 2436–2442 (2009).

    Article  CAS  Google Scholar 

  29. Ma, L. & Lin, W. Chirality-controlled and solvent-templated catenation isomerism in metal–organic frameworks. J. Am. Chem. Soc. 130, 13834–13835 (2008).

    Article  CAS  Google Scholar 

  30. Lin, X. et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).

    Article  CAS  Google Scholar 

  31. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).

    Article  CAS  Google Scholar 

  32. Kiang, Y. H., Gardner, G. B., Lee, S., Xu, Z. T. & Lobkovsky, E. B. Variable pore size, variable chemical functionality, and an example of reactivity within porous phenylacetylene silver salts. J. Am. Chem. Soc. 121, 8204–8215 (1999).

    Article  CAS  Google Scholar 

  33. Wang, Z. Q. & Cohen, S. M. Postsynthetic covalent modification of a neutral metal–organic framework. J. Am. Chem. Soc. 129, 12368–12369 (2007).

    Article  CAS  Google Scholar 

  34. Wang, Z. Q. & Cohen, S. M. Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev. 38, 1315–1329 (2009).

    Article  CAS  Google Scholar 

  35. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  36. Evans, O. R. & Lin, W. Crystal engineering of NLO materials based on metal–organic coordination networks. Acc. Chem. Res. 35, 511–522 (2002).

    Article  CAS  Google Scholar 

  37. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  38. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    Article  CAS  Google Scholar 

  39. Farha, O. K., Mulfort, K. L. & Hupp, J. T. An example of node-based postassembly elaboration of a hydrogen-sorbing, metal–organic framework material. Inorg. Chem. 47, 10223–10225 (2008).

    Article  CAS  Google Scholar 

  40. Ma, L., Xie, Z., Jin, A. & Lin, W. Freeze drying significantly increases permanent porosity and hydrogen uptake in 4,4-connected metal–organic frameworks. Angew. Chem. Int. Ed. 48, 9905–9908 (2009).

    Article  CAS  Google Scholar 

  41. Walton, K. S. & Snurr, R. Q. Applicability of the BET method for determining surface areas of microporous metal–organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007).

    Article  CAS  Google Scholar 

  42. Serre, C. et al. Role of solvent–host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

    Article  CAS  Google Scholar 

  43. Llewellyn, P. L. et al. Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation. J. Am. Chem. Soc. 130, 12808–12814 (2008).

    Article  CAS  Google Scholar 

  44. Nelson, A. P., Farha, O. K., Mulfort, K. L. & Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal–organic framework materials. J. Am. Chem. Soc. 131, 458–460 (2009).

    Article  CAS  Google Scholar 

  45. Pu, L. & Yu, H. B. Catalytic asymmetric organozinc additions to carbonyl compounds. Chem. Rev. 101, 757–824 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (CHE-0512495 and -0809776) for generous support of this research and R. Huxford for experimental help.

Author information

Authors and Affiliations

Authors

Contributions

L.M., J.M.F., C.A. and W.L. designed and conducted the research. L.M., J.M.F. and W.L. co-wrote the paper.

Corresponding author

Correspondence to Wenbin Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2307 kb)

Supplementary information

Crystallographic data for compound CMOF-1a (CIF 13 kb)

Supplementary information

Crystallographic data for compound CMOF-2a (CIF 13 kb)

Supplementary information

Crystallographic data for compound CMOF-2b (CIF 12 kb)

Supplementary information

Crystallographic data for compound CMOF-3b (CIF 14 kb)

Supplementary information

Crystallographic data for compound CMOF-4a (CIF 15 kb)

Supplementary information

Crystallographic data for compound CMOF-4b (CIF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Falkowski, J., Abney, C. et al. A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nature Chem 2, 838–846 (2010). https://doi.org/10.1038/nchem.738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing