Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation

Abstract

Polyoxygenated hydrocarbons that bear one or more hydroxyl groups comprise a large set of natural and synthetic compounds, often with potent biological activity. In synthetic chemistry, alcohols are important precursors to carbonyl groups, which then can be converted into a wide range of oxygen- or nitrogen-based functionality. Therefore, the selective conversion of a single hydroxyl group in natural products into a ketone would enable the selective introduction of unnatural functionality. However, the methods known to convert a simple alcohol, or even an alcohol in a molecule that contains multiple protected functional groups, are not suitable for selective reactions of complex polyol structures. We present a new ruthenium catalyst with a unique efficacy for the selective oxidation of a single hydroxyl group among many in unprotected polyol natural products. This oxidation enables the introduction of nitrogen-based functional groups into such structures that lack nitrogen atoms and enables a selective alcohol epimerization by stepwise or reversible oxidation and reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model alcohol oxidation and catalyst synthesis.
Figure 2: Examples of the site-selective oxidation of polyol natural products.
Figure 3: Examples of the 1,3-eclipsing interactions that influence the selectivity of the dehydrogenation of certain polyols.
Figure 4: Oxidation and amination of structurally complex polyol natural products.
Figure 5: The reduction of complex ketones and one-step epimerization of complex alcohols.

Similar content being viewed by others

References

  1. Lewis, C. A. & Miller, S. J. Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew. Chem. Int. Ed. 45, 5616–5619 (2006).

    Article  CAS  Google Scholar 

  2. Sun, X., Lee, H., Lee, S. & Tan, K. L. Catalyst recognition of cis-1,2-diols enables site-selective functionalization of complex molecules. Nat. Chem. 5, 790–795 (2013).

    Article  CAS  Google Scholar 

  3. Peddibhotla, S., Dang, Y., Liu, J. O. & Romo, D. Simultaneous arming and structure/activity studies of natural products employing O–H insertions: an expedient and versatile strategy for natural products-based chemical genetics. J. Am. Chem. Soc. 129, 12222–12231 (2007).

    Article  CAS  Google Scholar 

  4. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 110, 681–703 (2010).

    Article  CAS  Google Scholar 

  5. Noyori, R. & Hashiguchi, S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 30, 97–102 (1997).

    Article  CAS  Google Scholar 

  6. Shvo, Y., Czarkie, D. & Rahamim, Y. A new group of ruthenium complexes: structure and catalysis. J. Am. Chem. Soc. 108, 7400–7402 (1986).

    Article  CAS  Google Scholar 

  7. Almeida, M. L. S., Beller, M., Wang, G. & Backvall, J. Ruthenium(II)-catalyzed Oppenauer-type oxidation of secondary alcohols. Chem.-Eur. J. 1533–1536 (1996).

  8. Oldenhuis, N. J., Dong, V. M. & Guan, Z. From racemic alcohols to enantiopure amines: Ru-catalyzed diastereoselective amination. J. Am. Chem. Soc. 136, 12548–12551 (2014).

    Article  CAS  Google Scholar 

  9. Xiang, Y., Zhang, H., Fan, C. Q. & Yue, J. M. Novel diterpenoids and diterpenoid glycosides from Siegesbeckia orientalis. J. Nat. Prod. 67, 1517–1521 (2004).

    Article  CAS  Google Scholar 

  10. Arnone, A. et al. Microbial transformation of 10-deacetylbaccatin III (10-DAB) by Curvularia lunata and Trametes hirsuta. J. Mol. Catal. B 42, 95–98 (2006).

    Article  CAS  Google Scholar 

  11. Luo, J. et al. Synthesis of stable genipin derivatives and studies of their neuroprotective activity in PC12 cells. ChemMedChem 7, 1661–1668 (2012).

    Article  CAS  Google Scholar 

  12. Safaev, M. A., Zainutdinov, U. N. & Aslanov, K. A. Continuous method for obtaining lagochirzen. Chem. Nat. Compd 31, 145 (1995).

    Article  Google Scholar 

  13. Watanabe, M., Tanaka, K., Miki, T. & Murata, K. Process for preparing amine compound. US patent 2012/0065426 A1 (2012).

  14. Gavagnin, R., Cataldo, M., Pinna, F. & Strukul, G. Diphosphine−palladium and −platinum complexes as catalysts for the Baeyer−Villiger oxidation of ketones: effect of the diphosphine, oxidation of acyclic ketones, and mechanistic studies. Organometallics 17, 661–667 (1998).

    Article  CAS  Google Scholar 

  15. Pàmies, O. & Bäckvall, J. E. Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis. Chem. Rev. 103, 3247–3261 (2003).

    Article  Google Scholar 

  16. Warner, M. C. & Backvall, J. E. Mechanistic aspects on cyclopentadienylruthenium complexes in catalytic racemization of alcohols. Acc. Chem. Res. 46, 2545–2555 (2013).

    Article  CAS  Google Scholar 

  17. Långvik, O., Mavrynsky, D. & Leino, R. Selective ruthenium-catalyzed epimerization of chiral sec-alcohols. Catal. Today 241, 255–259 (2015).

    Article  Google Scholar 

  18. Mallat, T. & Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 104, 3037–3058 (2004).

    Article  CAS  Google Scholar 

  19. Kwon, M. S. et al. Palladium nanoparticles entrapped in aluminum hydroxide: dual catalyst for alkene hydrogenation and aerobic alcohol oxidation. Org. Lett. 7, 1077–1079 (2005).

    Article  CAS  Google Scholar 

  20. Steves, J. E. & Stahl, S. S. Stable TEMPO and ABNO catalyst solutions for user-friendly (bpy)Cu/nitroxyl-catalyzed aerobic alcohol oxidation. J. Org. Chem. 80, 11184–11188 (2015).

    Article  CAS  Google Scholar 

  21. Kim, W. H., Park, I. S. & Park, J. Acceptor-free alcohol dehydrogenation by recyclable ruthenium catalyst. Org. Lett. 8, 2543–2545 (2006).

    Article  CAS  Google Scholar 

  22. Yi, C. S., Zeczycki, T. N. & Guzei, I. A. Highly cooperative tetrametallic ruthenium-μ-oxo-μ-hydroxo catalyst for the alcohol oxidation reaction. Organometallics 25, 1047–1051 (2006).

    Article  CAS  Google Scholar 

  23. Eisink, N. N. H. M., Lohse, J., Witte, M. D. & Minnaard, A. J. Regioselective oxidation of unprotected 1,4 linked glucans. Org. Biomol. Chem. 14, 4859–4864 (2016).

    Article  CAS  Google Scholar 

  24. Scott, R. W. et al. Mupirocin F: structure elucidation, synthesis and rearrangements. Tetrahedron 67, 5098–5106 (2011).

    Article  CAS  Google Scholar 

  25. Bhat, S. V., Bajwa, B. S., Dornauer, H. & de Souza, N. J. Reactions of forskolin, a biologically active diterpenoid from coleus forskohlii. J. Chem. Soc. Perkin Trans. 1 767–771 (1982).

  26. Mathad, V. T., Kumar, S. & Raj, K. Oxidation studies on andrographolide. Nat. Prod. Res. 20, 1053–1058 (2006).

    Article  CAS  Google Scholar 

  27. Hayashi, M., Yamada, K. & Nakayama, S. Dehydrogenation of D-glycals by palladium supported on activated charcoal under ethylene atmosphere: synthesis of 1,5-anhydrohex-1-en-3-uloses. Synthesis 1869–1871 (1999).

  28. Fieser, L. F. & Rajagopalan, S. Selective oxidation with N-bromosuccinimide. I. cholic acid. J. Am. Chem. Soc. 71, 3935–3938 (1949).

    Article  CAS  Google Scholar 

  29. Welankiwar, S. S. & Murphy, W. S. Stereoselective oxidation of fusidic acid derivatives. J. Chem. Soc. Perkin Trans. 1 710–712 (1976).

  30. Chung, K. et al. Chemoselective Pd-catalyzed oxidation of polyols: synthetic scope and mechanistic studies. J. Am. Chem. Soc. 135, 7593–7602 (2013).

    Article  CAS  Google Scholar 

  31. Yi, C. S., He, Z. & Guzei, I. A. Transfer hydrogenation of carbonyl compounds catalyzed by a ruthenium-acetamido complex: evidence for a stepwise hydrogen transfer mechanism. Organometallics 20, 3641–3643 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the NIH (GM-55382) and the Berkeley Center for Green Chemistry Systems Approach to Green Energy Integrated Graduate Education and Research Traineeship for financial support. We acknowledge A. DiPasquale for assistance with X-ray crystallographic characterizations and the NIH (SIG S10-RR027172) for facility funding.

Author information

Authors and Affiliations

Authors

Contributions

C.K.H. and J.F.H. conceived and designed the experiments. C.K.H. performed the experiments. C.K.H. and J.F.H. analysed the data. C.K.H. and J.F.H. co-wrote the paper.

Corresponding author

Correspondence to John F. Hartwig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2520 kb)

Supplementary information

Crystallographic data for compound 1l (CIF 1908 kb)

Supplementary information

Crystallographic data for compound 2c (CIF 382 kb)

Supplementary information

Crystallographic data for compound 2d (CIF 406 kb)

Supplementary information

Crystallographic data for compound 2e (CIF 540 kb)

Supplementary information

Crystallographic data for compound Ru-2-DABIII-Alkoxid (CIF 2225 kb)

Supplementary information

Crystallographic data for compound Ru-2 (CIF 2846 kb)

Supplementary information

Crystallographic data for compound Ru-3-Cl (CIF 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, C., Hartwig, J. Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation. Nature Chem 9, 1213–1221 (2017). https://doi.org/10.1038/nchem.2835

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing