Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanically controlled quantum interference in individual π-stacked dimers

Abstract

Recent observations of destructive quantum interference in single-molecule junctions confirm the role of quantum effects in the electronic conductance properties of molecular systems. These effects are central to a broad range of chemical and biological processes and may be beneficial for the design of single-molecule electronic components to exploit the intrinsic quantum effects that occur at the molecular scale. Here we show that destructive interference can be turned on or off within the same molecular system by mechanically controlling its conformation. Using a combination of ab initio calculations and single-molecule conductance measurements, we demonstrate the existence of a quasiperiodic destructive quantum-interference pattern along the breaking traces of π-stacked molecular dimers. The results demonstrate that it is possible to control the molecular conductance over more than one order of magnitude and with a sub-ångström resolution by exploiting the subtle structure–property relationship of π-stacked dimers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulations of the electronic transport properties of S–OPE3 and S–OPE3–S.
Figure 2: Conductance analysis of S–OPE3 π-stacked dimers.
Figure 3: Statistical analysis of the conductance plateaus.
Figure 4: Statistical analysis of the conductance drops observed in single traces.

Similar content being viewed by others

References

  1. Núñez, M. E., Hall, D. B. & Barton, J. K. Long-range oxidative damage to DNA: effects of distance and sequence. Chem. Biol. 6, 85–97 (1999).

    Article  Google Scholar 

  2. Merino, E. J., Boal, A. K. & Barton, J. K. Biological contexts for DNA charge transport chemistry. Curr. Opin. Chem. Biol. 12, 229–237 (2008).

    Article  CAS  Google Scholar 

  3. Brettel, K. & Leibl, W. Electron transfer in photosystem I. Biochim. Biophys. Acta 1507, 100–114 (2001).

    Article  CAS  Google Scholar 

  4. Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92, 435–461 (1992).

    Article  CAS  Google Scholar 

  5. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

  6. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  CAS  Google Scholar 

  7. Yi, Y., Coropceanu, V. & Bredas, J.-L. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells. J. Mater. Chem. 21, 1479–1486 (2011).

    Article  CAS  Google Scholar 

  8. Solomon, G. C., Herrmann, C., Vura-Weis, J., Wasielewski, M. R. & Ratner, M. A. The chameleonic nature of electron transport through π-stacked systems. J. Am. Chem. Soc. 132, 7887–7889 (2010).

    Article  CAS  Google Scholar 

  9. Delgado, M. C. R., Kim, E.-G., da Silva Filho, D. A. & Bredas, J.-L. Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: a density functional theory investigation. J. Am. Chem. Soc. 132, 3375–3387 (2010).

    Article  Google Scholar 

  10. Wu, S. et al. Molecular junctions based on aromatic coupling. Nature Nanotech. 3, 569–574 (2008).

    Article  CAS  Google Scholar 

  11. González, M. T. et al. Break-junction experiments on acetyl-protected conjugated dithiols under different environmental conditions. J. Phys. Chem. C 115, 17973–17978 (2011).

    Article  Google Scholar 

  12. Fujii, S. et al. Rectifying electron-transport properties through stacks of aromatic molecules inserted into a self-assembled cage. J. Am. Chem. Soc. 137, 5939–5947 (2015).

    Article  CAS  Google Scholar 

  13. Martín, S. et al. Identifying diversity in nanoscale electrical break junctions. J. Am. Chem. Soc. 132, 9157–9164 (2010).

    Article  Google Scholar 

  14. Batra, A. et al. Quantifying through-space charge transfer dynamics in π-coupled molecular systems. Nature Commun. 3, 1086 (2012).

    Article  Google Scholar 

  15. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  16. Li, Q. & Solomon, G. C. Exploring coherent transport through π-stacked systems for molecular electronic devices. Faraday Discuss. 174, 21–35 (2014).

    Article  CAS  Google Scholar 

  17. Li-Li, L., Xiu-Neng, S., Yi, L. & Chuan-Kui, W. Formation and electronic transport properties of bimolecular junctions based on aromatic coupling. J. Phys Condens. Matter 22, 325102 (2010).

    Article  Google Scholar 

  18. Solomon, G. C. et al. Quantum interference in acyclic systems: conductance of cross-conjugated molecules. J. Am. Chem. Soc. 130, 17301–17308 (2008).

    Article  CAS  Google Scholar 

  19. Guedon, C. M. et al. Observation of quantum interference in molecular charge transport. Nature Nanotech. 7, 305–309 (2012).

    Article  CAS  Google Scholar 

  20. Sautet, P. & Joachim, C. Electronic interference produced by a benzene embedded in a polyacetylene chain. Chem. Phys. Lett. 153, 511–516 (1988).

    Article  CAS  Google Scholar 

  21. Stafford, C. A., Cardamone, D. M. & Mazumdar, S. The quantum interference effect transistor. Nanotechnology 18, 42014 (2007).

    Article  Google Scholar 

  22. Baer, R. & Neuhauser, D. Phase coherent electronics: a molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002).

    Article  CAS  Google Scholar 

  23. Perrin, M. et al. Large negative differential conductance in single-molecule break junctions. Nature Nanotech. 9, 830–834 (2014).

    Article  CAS  Google Scholar 

  24. Frisenda, R. et al. Electrical properties and mechanical stability of anchoring groups for single-molecule electronics. Beilstein J. Nanotechnol. 6, 1558–1567 (2015).

    Article  CAS  Google Scholar 

  25. Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2010).

    Book  Google Scholar 

  26. Verzijl, C. J. O., Seldenthuis, J. S. & Thijssen, J. M. Applicability of the wide-band limit in DFT-based molecular transport calculations. J. Chem. Phys. 138, 094102 (2013).

    Article  CAS  Google Scholar 

  27. He, J. et al. Measuring single molecule conductance with break junctions. Faraday Discuss. 131, 145–154 (2006).

    Article  CAS  Google Scholar 

  28. Frisenda, R., Perrin, M. L., Valkenier, H., Hummelen, J. C. & van der Zant, H. S. J. Statistical analysis of single-molecule breaking traces. Phys. Status Solidi B 250, 2431–2436 (2013).

    Article  CAS  Google Scholar 

  29. Brychta, R. J., Shiavi, R., Robertson, D. & Diedrich, A. Spike detection in human muscle sympathetic nerve activity using the kurtosis of stationary wavelet transform coefficients. J. Neurosci. Methods 160, 359–367 (2007).

    Article  Google Scholar 

  30. te Velde, G. et al. Chemistry with ADF. J. Comp. Chem. 22, 931–967 (2001).

    Article  CAS  Google Scholar 

  31. Senthilkumar, K., Grozema, F. C., Bickelhaupt, F. M. & Siebbeles, L. D. A. Charge transport in columnar stacked triphenylenes: effects of conformational fluctuations on charge transfer integrals and site energies. J. Chem. Phys. 119, 9809 (2003).

    Article  CAS  Google Scholar 

  32. Martin, C. A., Smit, R. H. M., van Egmond, R., van der Zant, H. S. J. & van Ruitenbeek, J. M. A versatile low-temperature setup for the electrical characterization of single-molecule junctions. Rev. Sci. Instrum. 82, 053907 (2011).

    Article  Google Scholar 

  33. Kleinberg, J. in Proc. 8th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining 91–101 (ACM, 2002).

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council (ERC) FP7 ERC Grant Agreement No. 240299 (Mols@Mols) and Horizon 2020 ERC Grant Agreement No. 648433.

Author information

Authors and Affiliations

Authors

Contributions

N.R. and F.C.G. performed the electronic transport calculations and the molecular dynamics simulations. R.F., V.A.E.C.J. and H.S.J.Z. performed the break-junction experiments. R.F. designed and implemented the analysis of the plateaus. N.R. designed and implemented the higher-order statistical analysis of conductance drops. All the authors wrote the manuscript.

Corresponding authors

Correspondence to Ferdinand C. Grozema or Herre S. J. van der Zant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frisenda, R., Janssen, V., Grozema, F. et al. Mechanically controlled quantum interference in individual π-stacked dimers. Nature Chem 8, 1099–1104 (2016). https://doi.org/10.1038/nchem.2588

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing