Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconstitution of [Fe]-hydrogenase using model complexes

Abstract

[Fe]-Hydrogenase catalyses the reversible hydrogenation of a methenyltetrahydromethanopterin substrate, which is an intermediate step during the methanogenesis from CO2 and H2. The active site contains an iron-guanylylpyridinol cofactor, in which Fe2+ is coordinated by two CO ligands, as well as an acyl carbon atom and a pyridinyl nitrogen atom from a 3,4,5,6-substituted 2-pyridinol ligand. However, the mechanism of H2 activation by [Fe]-hydrogenase is unclear. Here we report the reconstitution of [Fe]-hydrogenase from an apoenzyme using two FeGP cofactor mimics to create semisynthetic enzymes. The small-molecule mimics reproduce the ligand environment of the active site, but are inactive towards H2 binding and activation on their own. We show that reconstituting the enzyme using a mimic that contains a 2-hydroxypyridine group restores activity, whereas an analogous enzyme with a 2-methoxypyridine complex was essentially inactive. These findings, together with density functional theory computations, support a mechanism in which the 2-hydroxy group is deprotonated before it serves as an internal base for heterolytic H2 cleavage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction catalysed by [Fe]-hydrogenase and reconstitution of [Fe]-hydrogenase with the model complexes of the FeGP cofactor.
Figure 2: Structures of synthetic models of the FeGP cofactor.
Figure 3: Infrared spectra of the model complexes and FeGP cofactor.
Figure 4: Activity of the [Fe]-hydrogenase holoenzyme reconstituted with model compound 3i.
Figure 5: Infrared spectra of the [Fe]-hydrogenases reconstituted with 3i and 4i.
Figure 6: Lowest-energy reaction pathways for the catalytic cycles that involve model complexes 5 and 6.

Similar content being viewed by others

References

  1. Vignais, P. M. & Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Lubitz, W., Ogata, H., Rudiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Shima, S. et al. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321, 572–575 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Shima, S. & Ermler, U. Structure and function of [Fe]-hydrogenase and its iron-guanylylpyridinol (FeGP) cofactor. Eur. J. Inorg. Chem. 963–972 (2011).

  6. Buurman, G., Shima, S. & Thauer, R. K. The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor. FEBS Lett. 485, 200–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Shima, S. et al. The cofactor of the iron–sulfur cluster free hydrogenase Hmd: structure of the light-inactivation product. Angew. Chem. Int. Ed. 43, 2547–2551 (2004).

    Article  CAS  Google Scholar 

  8. Hiromoto, T. et al. The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl–iron ligation in the active site iron complex. FEBS Lett. 583, 585–590 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Vogt, S., Lyon, E. J., Shima, S. & Thauer, R. K. The exchange activities of [Fe] hydrogenase (iron–sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. J. Biol. Inorg. Chem. 13, 97–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Hiromoto, T., Warkentin, E., Moll, J., Ermler, U. & Shima, S. The crystal structure of an [Fe]-hydrogenase-substrate complex reveals the framework for H2 activation. Angew. Chem. Int. Ed. 48, 6457–6460 (2009).

    Article  CAS  Google Scholar 

  11. Chen, D., Scopelliti, R. & Hu, X. [Fe]-hydrogenase models featuring acylmethylpyridinyl ligands. Angew. Chem. Int. Ed. 49, 7512–7515 (2010).

    Article  CAS  Google Scholar 

  12. Chen, D., Scopelliti, R. & Hu, X. A five-coordinate iron center in the active site of [Fe]-hydrogenase: hints from a model study. Angew. Chem. Int. Ed. 50, 5671–5673 (2011).

    Article  CAS  Google Scholar 

  13. Hu, B., Chen, D. & Hu, X. Synthesis and reactivity of mononuclear iron models of [Fe]-hydrogenase that contain an acylmethylpyridinol ligand. Chem. Eur. J. 20, 1677–1682 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Turrell, P. J., Wright, J. A., Peck, J. N. T., Oganesyan, V. S. & Pickett, C. J. The third hydrogenase: a ferracyclic carbamoyl with close structural analogy to the active site of Hmd. Angew. Chem. Int. Ed. 49, 7508–7511 (2010).

    Article  CAS  Google Scholar 

  15. Schultz, K. M., Chen, D. & Hu, X. [Fe]-hydrogenase and models that contain iron–acyl ligation. Chem. Asian J. 8, 1068–1075 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Song, L. C. et al. Synthesis, structural characterization, and some properties of 2-acylmethyl-6-ester group-difunctionalized pyridine-containing iron complexes related to the active site of [Fe]-hydrogenase. Dalton Trans. 43, 8062–8071 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Royer, A. M., Salomone-Stagni, M., Rauchfuss, T. B. & Meyer-Klaucke, W. Iron acyl thiolato carbonyls: structural models for the active site of the [Fe]-hydrogenase (Hmd). J. Am. Chem. Soc. 132, 16997–17003 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tard, C. & Pickett, C. J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 2245–2274 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Camara, J. M. & Rauchfuss, T. B. Combining acid–base, redox and substrate binding functionalities to give a complete model for the FeFe-hydrogenase. Nature Chem. 4, 26–30 (2012).

    Article  CAS  Google Scholar 

  20. Ogo, S. et al. A functional [NiFe] hydrogenase mimic that catalyzes electron and hydride transfer from H2 . Science 339, 682–684 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Xu, T., Chen, D. & Hu, X. Hydrogen-activating models of hydrogenases. Coord. Chem. Rev. 303, 32–41 (2015).

    Article  CAS  Google Scholar 

  22. Shima, S., Schick, M., Ataka, K., Steinbach, K. & Linne, U. Evidence for acyl–iron ligation in the active site of [Fe]-hydrogenase provided by mass spectrometry and infrared spectroscopy. Dalton Trans. 41, 767–771 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, X. Z. & Hall, M. B. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe–Hδ–···Hδ+–O, bond and methenyl-H4MPT+ triggered hydride transfer. J. Am. Chem. Soc. 131, 10901–10908 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Finkelmann, A. R., Stiebritz, M. T. & Reiher, M. Kinetic modeling of hydrogen conversion at [Fe]-hydrogenase active-site models. J. Phys. Chem. B 117, 4806–4817 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Dey, A. Density functional theory calculations on the mononuclear non-heme iron active site of Hmd hydrogenase: role of the internal ligands in tuning external ligand binding and driving H2 heterolysis. J. Am. Chem. Soc. 132, 13892–13901 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Wodrich, M. D. & Hu, X. Electronic elements governing the binding of small molecules to a Fe-hydrogenase mimic. Eur. J. Inorg. Chem. 2013, 3993–3999 (2013).

    Article  CAS  Google Scholar 

  27. Murray, K. A., Wodrich, M. D., Hu, X. L. & Corminboeuf, C. Toward functional type III [Fe]-hydrogenase biomimics for H2 activation: insights from computation. Chem.-Eur. J. 21, 3987–3996 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Ma, K., Zirngibl, C., Linder, D., Stetter, K. O. & Thauer, R. K. N5,N10-methylenetetrahydromethanopterin dehydrogenase (H2-forming) from the extreme thermophile Methanopyrus kandleri. Arch. Microbiol. 156, 43–48 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Zirngibl, C. et al. H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron–sulfur clusters in methanogenic archaea. Eur. J. Biochem. 208, 511–520 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Berggren, G. et al. Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Esselborn, J. et al. Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nature Chem. Biol. 9, 607–609 (2013).

    Article  CAS  Google Scholar 

  32. Siebel, J. F. et al. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity. Biochemistry 54, 1474–1483 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Shima, S., Schick, M. & Tamura, H. Preparation of [Fe]-hydrogenase from methanogenic archaea. Methods Enzymol. 494, 119–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Bart, S. C., Lobkovsky, E. & Chirik, P. J. Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation. J. Am. Chem. Soc. 126, 13794–13807 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Lagaditis, P. O. et al. Iron(II) complexes containing unsymmetrical P–N–P′ pincer ligands for the catalytic asymmetric hydrogenation of ketones and imines. J. Am. Chem. Soc. 136, 1367–1380 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Shima, S. & Ataka, K. Isocyanides inhibit [Fe]-hydrogenase with very high affinity. FEBS Lett. 585, 353–356 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Lyon, E. J. et al. Carbon monoxide as an intrinsic ligand to iron in the active site of the iron–sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J. Am. Chem. Soc. 126, 14239–14248 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Korbas, M. et al. The iron–sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. J. Biol. Chem. 281, 30804–30813 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Tamura, H. et al. Crystal structures of [Fe]-hydrogenase in complex with inhibitory isocyanides: implications for H2-activation site. Angew. Chem. Int. Ed. 52, 9656–9659 (2013).

    Article  CAS  Google Scholar 

  40. Finkelmann, A. R., Senn, H. M. & Reiher, M. Hydrogen-activation mechanism of [Fe] hydrogenase revealed by multi-scale modeling. Chem. Sci. 5, 4474–4482 (2014).

    Article  CAS  Google Scholar 

  41. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  42. Zhao, Y. & Truhlar, D. G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Gaussian 09, revision D.01 (Gaussian, Inc., Wallingford, Connecticut, 2009).

  45. Steinmann, S. N. & Corminboeuf, C. Comprehensive bench marking of a density-dependent dispersion correction. J. Chem. Theory Comp. 7, 3567–3577 (2011).

    Article  CAS  Google Scholar 

  46. Becke, A. D. Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  47. Lee, C. T., Yang, W. T. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  48. ADF2013 (Scientific Computing and Modelling, Amsterdam, 2013).

  49. Klamt, A. The COSMO and COSMO-RS solvation models. WIREs Comput. Mol. Sci. 1, 699–709 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Thauer for discussions and helpful suggestions. C. Corminboeuf and the Laboratory for Computational Molecular Design at the EPFL are acknowledged for providing computational resources. This work was supported by grants from the Max Planck Society (to R. Thauer) and for the PRESTO program from the Japan Science and Technology Agency to S. Shima, a grant from the National Natural Science Foundation of China (No. 21302028) to D. Chen and grants from the Swiss National Science Foundation (200020_134473/1 and 200020_152850/1) to X. Hu.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and X.H. directed the research. S.S., D.C. and X.H. designed the study. D.C., T.X. and K.M.S. synthesized the model compounds. S.S. reconstituted and characterized the semisynthetic [Fe]-hydrogenase. J.K. performed the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. K.A. performed the infrared spectroscopy with S.S. and T.F. M.D.W. carried out the computations. S.S. and X.H. wrote the manuscript with contributions from all the co-authors.

Corresponding authors

Correspondence to Seigo Shima or Xile Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shima, S., Chen, D., Xu, T. et al. Reconstitution of [Fe]-hydrogenase using model complexes. Nature Chem 7, 995–1002 (2015). https://doi.org/10.1038/nchem.2382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing