Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper-catalysed selective hydroamination reactions of alkynes

An Erratum to this article was published on 23 January 2014

This article has been updated

Abstract

The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bioactive amines, the synthesis of amines from alkynes, and the reductive hydroamination cascade strategy.
Figure 2: Concise routes to drugs through cascade reductive hydroamination of alkynes.
Figure 3: Proposed catalytic cycles and mechanistic experiments.

Similar content being viewed by others

Change history

  • 18 December 2014

    In the version of this Article originally published, the red arrow at the top right of Fig. 1c should have been solid not dashed. This has now been corrected in the online versions of the Article.

References

  1. Trost, B. M. Selectivity: the key to synthetic efficiency. Science 219, 245–250 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach 3rd edn (Wiley, 2008).

    Google Scholar 

  3. Nugent, T. C. Chiral Amine Synthesis: Methods, Developments and Applications (Wiley, 2010).

    Book  Google Scholar 

  4. Surry, D. S. & Buchwald, S. L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 47, 6338–6361 (2008).

    Article  CAS  Google Scholar 

  5. Surry, D. S. & Buchwald, S. L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide. Chem. Sci. 2, 27−50 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Robak, M. T., Herbage, M. A. & Ellman, J. A. Synthesis and applications of tert-butanesulfinamide. Chem. Rev. 110, 3600–3740 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simon, R. C. et al. Regio- and stereoselective monoamination of diketones without protecting groups. Angew. Chem. Int. Ed. 51, 6713–6716 (2012).

    Article  CAS  Google Scholar 

  9. Höhne, M., Kühl, S., Robins, K. & Bornscheuer, U. T. Efficient asymmetric synthesis of chiral amines by combining transaminase and pyruvate decarboxylase. ChemBioChem 9, 363–365 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. Hultzsch, K. C. Catalytic asymmetric hydroamination of non-activated olefins. Org. Biomol. Chem. 3, 1819−1824 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Hannedouche, J. & Schulz, E. Asymmetric hydroamination: a survey of the most recent developments. Chem. Eur. J. 19, 4972–4985 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795–3892 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. Chinchilla, R. & Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 40, 5084−5121 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Trost, B. M. & Weiss, A. H. The enantioselective addition of alkyne nucleophiles to carbonyl groups. Adv. Synth. Catal. 351, 963–983 (2009).

    Article  CAS  Google Scholar 

  15. Habrant, D., Rauhala, V. & Koskinen, A. M. P. Conversion of carbonyl compounds to alkynes: general overview and recent developments. Chem. Soc. Rev. 39, 2007–2017 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Severin, R. & Doye, S. The catalytic hydroamination of alkynes. Chem. Soc. Rev. 36, 1407–1420 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Alonso, F., Beletskaya, I. P. & Yus, M. Transition-metal-catalyzed addition of heteroatom–hydrogen bonds to alkynes. Chem. Rev. 104, 3079–3160 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Zeng, X. Recent advances in catalytic sequential reactions involving hydroelement addition to carbon–carbon multiple bonds. Chem. Rev. 113, 6864–6900 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Li, L. & Herzon, S. B. Regioselective reductive hydration of alkynes to form branched or linear alcohols. J. Am. Chem. Soc. 134, 17376−17379 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Li, L. & Herzon, S. B. Temporal separation of catalytic activities allows anti-Markovnikov reductive functionalization of terminal alkynes. Nature Chem. 6, 22–27 (2014).

    Article  CAS  Google Scholar 

  21. Zeng, M., Li, L. & Herzon, S. B. A highly active and air-stable ruthenium complex for the ambient temperature anti-Markovnikov reductive hydration of terminal alkynes. J. Am. Chem. Soc. 136, 7058–7067 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Uehling, M. R., Rucker, R. P. & Lalic, G. Catalytic anti-Markovnikov hydrobromination of alkynes. J. Am. Chem. Soc. 136, 8799–8803 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, S., Niljianskul, N. & Buchwald, S. L. Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc. 135, 15746−15749 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Miki, Y., Hirano, K., Satoh, T. & Miura, M. Copper-catalyzed intermolecular regioselective hydroamination of styrenes with polymethylhydrosiloxane and hydroxylamines. Angew. Chem. Int. Ed. 52, 10830–10834 (2013).

    Article  CAS  Google Scholar 

  25. Deutsch, C., Krause, N. & Lipshutz, B. H. CuH-catalyzed reactions. Chem. Rev. 108, 2916–2927 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Mahoney, W. S. & Stryker, J. M. Hydride-mediated homogeneous catalysis. Catalytic reduction of α,β-unsaturated ketones using [(Ph3P)CuH]6 and H2 . J. Am. Chem. Soc. 111, 8818–8823 (1989).

    Article  CAS  Google Scholar 

  27. Lipshutz, B. H., Keith, J., Papa, P. & Vivian, R. A convenient, efficient method for conjugate reductions using catalytic quantities of Cu(I). Tetrahedron Lett. 39, 4627–4630 (1998).

    Article  CAS  Google Scholar 

  28. Appella, D. H., Moritani, Y., Shintani, R., Ferreira, E. M. & Buchwald, S. L. Asymmetric conjugate reduction of α,β-unsaturated esters using a chiral phosphine–copper catalyst. J. Am. Chem. Soc. 121, 9473–9474 (1999).

    Article  CAS  Google Scholar 

  29. Moritani, Y., Appella, D. H., Jurkauskas, V. & Buchwald, S. L. Synthesis of β-alkyl cyclopentanones in high enantiomeric excess via copper-catalyzed asymmetric conjugate reduction. J. Am. Chem. Soc. 122, 6797–6798 (2000).

    Article  CAS  Google Scholar 

  30. Yun, J. & Buchwald, S. L. One-pot synthesis of enantiomerically enriched 2,3-disubstituted cyclopentanones via copper-catalyzed 1,4-reduction and alkylation. Org. Lett. 3, 1129–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Jurkauskas, V. & Buchwald, S. L. Dynamic kinetic resolution via asymmetric conjugate reduction: enantio- and diastereoselective synthesis of 2,4-dialkyl cyclopentanones. J. Am. Chem. Soc. 124, 2892–2893 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Rainka, M. P., Aye, Y. & Buchwald, S. L. Copper-catalyzed asymmetric conjugate reduction as a route to novel β-azaheterocyclic acid derivatives. Proc. Natl Acad. Sci. USA 101, 5821−5823 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Erdik, E. & Ay, M. Electrophilic amination of carbanions. Chem. Rev. 89, 1947–1980 (1989).

    Article  CAS  Google Scholar 

  34. Barker, T. J. & Jarvo, E. R. Developments in transition-metal-catalyzed reactions using electrophilic nitrogen sources. Synthesis 24, 3954–3964 (2011).

    Google Scholar 

  35. Berman, A. M. & Johnson, J. S. Copper-catalyzed electrophilic amination of diorganozinc reagents. J. Am. Chem. Soc. 126, 5680–5681 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Campbell, M. J. & Johnson, J. S. Mechanistic studies of the copper-catalyzed electrophilic amination of diorganozinc reagents and development of a zinc-free protocol. Org. Lett. 9, 1521–1524 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Xu, P-F. & Wang, W. Catalytic Cascade Reactions (Wiley, 2014).

    Google Scholar 

  38. Daeuble, J. F., McGettigan, C. & Stryker, J. M. Selective reduction of alkynes to cis-alkenes by hydrometallation using [(Ph3P)CuH]6 . Tetrahedron Lett. 31, 2397–2400 (1990).

    Article  CAS  Google Scholar 

  39. Semba, K., Fujihara, T., Xu, T., Terao, J. & Tsuji, Y. Copper-catalyzed highly selective semihydrogenation of non-polar carbon–carbon multiple bonds using a silane and an alcohol. Adv. Synth. Catal. 354, 1542–1550 (2012).

    Article  CAS  Google Scholar 

  40. Whittaker, A. M. & Lalic, G. Monophasic catalytic system for the selective semireduction of alkynes. Org. Lett. 15, 1112−1115 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Field, L. D., Messerle, B. A. & Wren, S. L. One-pot tandem hydroamination/hydrosilation catalyzed by cationic iridium(I) complexes. Organometallics 22, 4393–4395 (2003).

    Article  CAS  Google Scholar 

  42. Heutling, A., Pohlki, F., Bytschkov, I. & Doye, S. Hydroamination/hydrosilylation sequence catalyzed by titanium complexes. Angew. Chem. Int. Ed. 44, 2951–2954 (2005).

    Article  CAS  Google Scholar 

  43. Hesp, K. D. & Stradiotto, M. Stereo- and regioselective gold-catalyzed hydroamination of internal alkynes with dialkylamines. J. Am. Chem. Soc. 132, 18026–18029 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Jozsef, B. et al. Process for preparation of duloxetine and intermediates. International patent WO 2008078124 (2008).

  45. Wu, F., Chen, G. & Yang, X. Process for preparation of propylamine derivatives and application in manufacturing tomoxetine. Chinese patent CN1948277 (2007).

  46. Bhandari, K., Srivastava, S., Shanker, G. & Nath, C. Substituted propanolamines and alkylamines derived from fluoxetine as potent appetite suppressants. Bioorg. Med. Chem. 13, 1739–1747 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Paras, N. A., Simmons, B. & MacMillan, D. W. C. A process for the rapid removal of dialkylamino-substituents from aromatic rings. Application to the expedient synthesis of (R)-tolterodine. Tetrahedron 65, 3232−3238 (2009).

    Article  CAS  Google Scholar 

  48. Rupnicki, L., Saxena, A. & Lam, H. W. Aromatic heterocycles as activating groups for asymmetric conjugate addition reactions: enantioselective copper-catalyzed reduction of 2-alkenylheteroarenes. J. Am. Chem. Soc. 131, 10386–10387 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Institutes of Health for financial support (GM58160). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank S. Zhu (MIT), P.J. Milner (MIT) and M. Pirnot (MIT) for discussions. The authors thank Y. Wang (MIT) and N.T. Jui (Emory University) for help with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S-L.S. and S.L.B. designed the project, analysed the data and wrote the manuscript. S-L.S. performed the experiments.

Corresponding author

Correspondence to Stephen L. Buchwald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, SL., Buchwald, S. Copper-catalysed selective hydroamination reactions of alkynes. Nature Chem 7, 38–44 (2015). https://doi.org/10.1038/nchem.2131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing