Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts

Abstract

Halogen bonding (XB), the attractive interaction between an electron-deficient halogen atom and a Lewis base, has undergone a dramatic development as an intermolecular force analogous to hydrogen bonding (HB). However, its utilization in the solution phase remains underdeveloped. Furthermore, the design of receptors capable of strong and selective recognition of anions in water remains a significant challenge. Here we demonstrate the superiority of halogen bonding over hydrogen bonding for strong anion binding in water, to the extent that halide recognition by a simple acyclic mono-charged receptor is achievable. Quantification of iodide binding by rotaxane hosts reveals the strong binding by the XB-rotaxane is driven exclusively by favourable enthalpic contributions arising from the halogen-bonding interactions, whereas weaker association with the HB-rotaxanes is entropically driven. These observations demonstrate the unique nature of halogen bonding in water as a strong alternative interaction to the ubiquitous hydrogen bonding in molecular recognition and assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anion recognition in water using halogen bonding.
Figure 2: Chloride anion-templated synthesis of HB and XB rotaxane anion receptors.
Figure 3: Anion binding titrations with XB rotaxane 4 in D2O.
Figure 4: Amide-functionalized HB-donating anion receptors.
Figure 5: MD simulation of 4 with I.

Similar content being viewed by others

References

  1. Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. Halogen bonding in supramolecular chemistry. Angew. Chem. Int. Ed. 47, 6114–6127 (2008).

    Article  CAS  Google Scholar 

  2. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. An overview of halogen bonding. J. Mol. Model. 13, 305–311 (2007).

    Article  CAS  Google Scholar 

  3. Rissanen, K. Halogen bonded supramolecular complexes and networks. CrystEngComm 10, 1107–1113 (2008).

    Article  CAS  Google Scholar 

  4. Roper, L. C. et al. Experimental and theoretical study of halogen-bonded complexes of DMAP with di- and triiodofluorobenzenes. A complex with a very short N···I halogen bond. Cryst. Growth Des. 10, 3710–3720 (2010).

    Article  CAS  Google Scholar 

  5. Cinčić, D., Friščić, T. & Jones, W. Isostructural materials achieved by using structurally equivalent donors and acceptors in halogen-bonded cocrystals. Chem. Eur. J. 14, 747–753 (2008).

    Article  Google Scholar 

  6. Liantonio, R., Metrangolo, P., Pilati, T., Resnati, G. & Stevenazzi, A. Perfluorocarbon–hydrocarbon self-assembly: first crystalline halogen-bonded complex involving bromoperfluoroalkanes. Cryst. Growth Des. 3, 799–803 (2003).

    Article  CAS  Google Scholar 

  7. Xu, J. et al. Trimeric supramolecular liquid crystals induced by halogen bonds. J. Mater. Chem. 16, 3540–3545 (2006).

    Article  CAS  Google Scholar 

  8. Beale, T. M., Chudzinski, M. G., Sarwar, M. G. & Taylor, M. S. Halogen bonding in solution: thermodynamics and applications. Chem. Soc. Rev. 42, 1667–1680 (2013).

    Article  CAS  Google Scholar 

  9. Serpell, C. J., Kilah, N. L., Costa, P. J., Félix, V. & Beer, P. D. Halogen bond anion templated assembly of an imidazolium pseudorotaxane. Angew. Chem. Int. Ed. 49, 5322–5326 (2010).

    Article  CAS  Google Scholar 

  10. Gilday, L. C. et al. A catenane assembled through a single charge-assisted halogen bond. Angew. Chem. Int. Ed. 52, 4356–4360 (2013).

    Article  CAS  Google Scholar 

  11. Sarwar, M. G., Dragisic, B., Salsberg, L. J., Gouliaras, C. & Taylor, M. S. Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. J. Am. Chem. Soc. 132, 1646–1653 (2010).

    Article  CAS  Google Scholar 

  12. Sarwar, M. G., Dragisic, B., Sagoo, S. & Taylor, M. S. A tridentate halogen-bonding receptor for tight binding of halide anions. Angew. Chem. Int. Ed. 49, 1674–1677 (2010).

    Article  CAS  Google Scholar 

  13. Kilah, N. L. et al. Enhancement of anion recognition exhibited by a halogen-bonding rotaxane host system. J. Am. Chem. Soc. 132, 11893–11895 (2010).

    Article  CAS  Google Scholar 

  14. Zapata, F. et al. Fluorescent charge-assisted halogen-bonding macrocyclic halo-imidazolium receptors for anion recognition and sensing in aqueous media. J. Am. Chem. Soc. 134, 11533–11541 (2012).

    Article  CAS  Google Scholar 

  15. Caballero, A. et al. A halogen-bonding catenane for anion recognition and sensing. Angew. Chem. Int. Ed. 51, 1876–1880 (2012).

    Article  CAS  Google Scholar 

  16. Cametti, M. et al. 2-Iodo-imidazolium receptor binds oxoanions via charge assisted halogen bonding. Org. Biomol. Chem. 10, 1329–1333 (2012).

    Article  CAS  Google Scholar 

  17. Jentzsch, A. V. et al. Transmembrane anion transport mediated by halogen-bond donors. Nature Commun. 3, 905 (2012).

    Article  Google Scholar 

  18. Kniep, F. et al. Organocatalysis by neutral multidentate halogen-bond donors. Angew. Chem. Int. Ed. 52, 7028–7032 (2013).

    Article  CAS  Google Scholar 

  19. Voth, A. R., Hays, F. A. & Ho, P. S. Directing macromolecular conformation through halogen bonds. Proc. Natl Acad. Sci. USA 104, 6188–6193 (2007).

    Article  CAS  Google Scholar 

  20. Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 56, 1363–1388 (2013).

    Article  CAS  Google Scholar 

  21. Laurence, C., Graton, J., Berthelot, M. & El Ghomari, M. J. The diiodine basicity scale: toward a general halogen-bond basicity scale. Chem. Eur. J. 17, 10431–10444 (2011).

    Article  CAS  Google Scholar 

  22. Cabot, R. & Hunter, C. A. Non-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors. Chem. Commun. 2005–2007 (2009).

  23. Walter, S. M. et al. Isothermal calorimetric titrations on charge-assisted halogen bonds: role of entropy, counterions, solvent, and temperature. J. Am. Chem. Soc. 134, 8507–8512 (2012).

    Article  CAS  Google Scholar 

  24. Smith, D. A., Brammer, L., Hunter, C. A. & Perutz, R. N. Metal hydrides form halogen bonds: measurement of energetics of binding. J. Am. Chem. Soc. 136, 1288–1291 (2014).

    Article  CAS  Google Scholar 

  25. Kubik, S. Anion recognition in water. Chem. Soc. Rev. 39, 3648–3663 (2010).

    Article  CAS  Google Scholar 

  26. Sessler, J. L., Gale, P. A. & Cho, W-S. Anion Receptor Chemistry (Royal Society of Chemistry, 2006).

    Google Scholar 

  27. Rowe, S. M., Miller, S. & Sorscher, E. J. Cystic fibrosis. N. Engl. J. Med. 352, 1992–2001 (2005).

    Article  CAS  Google Scholar 

  28. Delange, F. The disorders induced by iodine deficiency. Thyroid 4, 107–128 (1994).

    Article  CAS  Google Scholar 

  29. Pflugrath, J. W. & Quiocho, F. A. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature 314, 257–260 (1985).

    Article  CAS  Google Scholar 

  30. Luecke, H. & Quiocho, F. A. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347, 402–406 (1990).

    Article  CAS  Google Scholar 

  31. Spence, G. T. & Beer, P. D. Expanding the scope of the anion templated synthesis of interlocked structures. Acc. Chem. Res. 46, 571–586 (2013).

    Article  CAS  Google Scholar 

  32. Collins, C. G., Peck, E. M., Kramer, P. J. & Smith, B. D. Squaraine rotaxane shuttle as a ratiometric deep-red optical chloride sensor. Chem. Sci. 4, 2557–2563 (2013).

    Article  CAS  Google Scholar 

  33. Hancock, L. M. et al. Rotaxanes capable of recognising chloride in aqueous media. Chem. Eur. J. 16, 13082–13094 (2010).

    Article  CAS  Google Scholar 

  34. White, N. G. & Beer, P. D. A catenane host system containing integrated triazole C–H hydrogen bond donors for anion recognition. Chem. Commun. 48, 8499–8501 (2012).

    Article  CAS  Google Scholar 

  35. Hancock, L. M. & Beer, P. D. Chloride recognition in aqueous media by a rotaxane prepared via a new synthetic pathway. Chem. Eur. J. 15, 42–44 (2009).

    Article  CAS  Google Scholar 

  36. Hynes, M. J. EQNMR: a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data. J. Chem. Soc. Dalton Trans. 2, 311–312 (1993).

    Article  Google Scholar 

  37. Gibb, C. L. D. & Gibb, B. C. in Supramolecular Chemistry: From Molecules to Nanomaterials Vol. 1 (eds Gale, P. A. & Steed, J. W.) 45–66 (Wiley, 2012).

    Google Scholar 

  38. Case, D. A. et al. AMBER 12 (Univ. California, 2012).

    Google Scholar 

  39. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  Google Scholar 

  40. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 26, 114 (2005).

    Article  CAS  Google Scholar 

  41. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.J.L. thanks the Engineering and Physical Sciences Research Council (EPSRC) for a Doctoral Training Account (DTA) studentship. S.W.R. thanks the Clarendon Fund and St. John's College, Oxford, for financial support. I.M. thanks the Fundação para a Ciência e a Tecnologia (FCT) for PhD scholarship SFRH/BD/87520/2012.

Author information

Authors and Affiliations

Authors

Contributions

P.D.B. conceived the project. The experimental work was performed mainly by M.J.L., with contributions from S.W.R. towards the synthesis of 1 and 2. I.M. and V.F. conducted the theoretical calculations. All authors contributed to the analysis of the data. M.J.L. and P.D.B. wrote the paper, with assistance from S.W.R. and V.F.

Corresponding author

Correspondence to Paul D. Beer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langton, M., Robinson, S., Marques, I. et al. Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts. Nature Chem 6, 1039–1043 (2014). https://doi.org/10.1038/nchem.2111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing