Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The electron is a catalyst

Abstract

The electron is an efficient catalyst for conducting various types of radical cascade reaction that proceed by way of radical and radical ion intermediates. But because electrons are omnipresent, catalysis by electrons often passes unnoticed. In this Review, a simple analogy between acid/base catalysis and redox catalysis is presented. Conceptually, the electron is a catalyst in much the same way that a proton is a catalyst. The 'electron is a catalyst' paradigm unifies mechanistically an assortment of synthetic transformations that otherwise have little or no apparent relationship. Diverse radical cascades, including unimolecular radical substitution reactions (SRN1-type chemistry), base-promoted homolytic aromatic substitutions (BHAS), radical Heck-type reactions, radical cross-dehydrogenative couplings (CDC), direct arene trifluoromethylations and radical alkoxycarbonylations, can all be viewed as electron-catalysed reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simple mechanistic analogy between base catalysis and hole catalysis.
Figure 2: A simple mechanistic analogy between acid catalysis and electron catalysis.
Figure 3: C–C and C–N bond formations by SRN1 type reactions.
Figure 4: Base-promoted homolytic aromatic substitution (BHAS) reactions.
Figure 5: Transition-metal-free Heck-type arylations.
Figure 6: Cross-dehydrogenative coupling reactions.
Figure 7: Trifluoromethylarene synthesis by base-promoted homolytic aromatic substitution.
Figure 8: Alkoxycarbonylation of aryl halides.

Similar content being viewed by others

References

  1. Eberson, L. in Electron Transfer Reactions in Organic Chemistry 172–189 (Springer, 1987).

    Book  Google Scholar 

  2. Chanon, M. & Tobe, M. L. A mechanistic concept for inorganic and organic chemistry. Angew. Chem. Int. Ed. Engl. 21, 1–23 (1982).

    Google Scholar 

  3. Bauld, N. L. in Advances in Electron Transfer Chemistry Vol. 2 (ed. Mariano, P. S.) 1–66 (Jai, 1992).

    Google Scholar 

  4. Shirakawa, E. Single electron catalyzed coupling of aryl halides. Yukigouseikagaku-Kyokaishi [J. Synth. Org. Chem.] 71, 526–533 (2014).

    Article  Google Scholar 

  5. Curran, D. P. The design and application of free radical chain reactions in organic synthesis. Part 1. Synthesis 417–439 (1988).

  6. Curran, D. P. The design and application of free radical chain reactions in organic synthesis. Part 2. Synthesis 489–513 (1988).

  7. Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999).

    Article  CAS  Google Scholar 

  8. Buckel, W. & Golding, B. T. in Encyclopedia of Radicals in Chemistry, Biology and Materials Vol. 3 (eds Chatgilialoglu & C. Studer, A.) 1501–1546 (Wiley, 2012).

    Google Scholar 

  9. Hawker, C. J., Bosman, A. W. & Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101, 3661–3688 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Fischer, H. The persistent radical effect: A principle for selective radical reactions and living radical polymerization. Chem. Rev. 101, 3581–3610 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Studer, A. The persistent radical effect in organic synthesis. Chem. Eur. J. 7, 1159–1164 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Studer, A. Tin-free radical chemistry using the persistent radical effect: alkoxyamine isomerization, addition reactions and polymerizations. Chem. Soc. Rev. 33, 267–273 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Curran, D. P. Free at last! Nature Chem. 4, 958 (2012).

    Article  CAS  Google Scholar 

  16. Studer, A. & Curran, D. P. Organocatalysis and C–H activation meet radical- and electron-transfer reactions. Angew. Chem. Int. Ed. 50, 5018–5022 (2011).

    Article  CAS  Google Scholar 

  17. Giese, B. et al. Excess electron transport through DNA: A single electron repairs more than one UV-induced lesion. Angew. Chem. Int. Ed. 43, 1848–1851, (2004).

    Article  CAS  Google Scholar 

  18. Borhani, D. W. & Greene, F. D. Triazolinediones. Conversion to deaza dimers by electron-transfer catalysis. A possible radical anion Diels–Alder reaction. J. Org. Chem. 51, 1563–1570 (1986).

    Article  CAS  Google Scholar 

  19. Alder, R. W. Electron-transfer chain catalysis of substitution reactions. Chem. Commun. 1184–1186 (1980).

  20. Bunnett, J. F. & Kim, J. K. Evidence for radical mechanism of aromatic 'nucleophilic' substitution. J. Am. Chem. Soc. 92, 7463–7464 (1970).

    Article  CAS  Google Scholar 

  21. Bardagí, J. I., Vaillard, V. A. & Rossi, R. A. in Encyclopedia of Radicals in Chemistry, Biology and Materials Vol. 1 (eds Chatgilialoglu, C. & Studer, A.) 333–364 (Wiley, 2012).

    Google Scholar 

  22. Budén, M. E., Vaillard, V. A., Martin, S. E. & Rossi, R. A. Synthesis of carbazoles by intramolecular arylation of diarylamide anions. J. Org. Chem. 74, 4490–4498 (2009).

    Article  PubMed  CAS  Google Scholar 

  23. Thomé, I., Besson, C., Kleine, T. & Bolm, C. Base-catalyzed synthesis of substituted indazoles under mild, transition-metal-free conditions. Angew. Chem. Int. Ed. 52, 7509–7513 (2013).

    Article  CAS  Google Scholar 

  24. Yanagisawa, S. & Itami, K. tert-Butoxide-mediated C–H bond arylation of aromatic compounds with haloarenes. ChemCatChem 3, 827–829 (2011).

    Article  CAS  Google Scholar 

  25. Shirakawa, E. & Hayashi, T. Transition-metal-free coupling reactions of aryl halides. Chem. Lett. 41, 130–134 (2012).

    Article  CAS  Google Scholar 

  26. Chan, T. L., Wu, Y., Choy, P. Y. & Kwong, F. Y. A radical process towards the development of transition-metal-free aromatic carbon–carbon bond-forming reactions. Chem. Eur. J. 19, 15802–15814 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Yanagisawa, S., Ueda, K., Taniguchi, T. & Itami, K. Potassium t-butoxide alone can promote the biaryl coupling of electron-deficient nitrogen heterocycles and haloarenes. Org. Lett. 10, 4673–4676 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Sun, C-L. et al. An efficient organocatalytic method for constructing biaryls through aromatic C–H activation. Nature Chem. 2, 1044–1049 (2010).

    Article  CAS  Google Scholar 

  29. Shirakawa, E., Itoh, K-I., Higashino, T. & Hayashi, T. tert-Butoxide-mediated arylation of benzene with aryl halides in the presence of a catalytic 1,10-phenanthroline derivative. J. Am. Chem. Soc. 132, 15537–15539 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, W. et al. Organocatalysis in cross-coupling: DMEDA-catalyzed direct C–H arylation of unactivated benzene. J. Am. Chem. Soc. 132, 16737–16740 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Bonin, H., Sauthier, M. & Felpin, F-X. Transition metal-mediated direct C–H arylation of heteroarenes involving aryl radicals. Adv. Synth. Catal. 356, 645–671 (2014).

    Article  CAS  Google Scholar 

  32. Shirakawa, E. et al. Cross-coupling of aryl Grignard reagents with aryl iodides and bromides through SRN1 pathway. Angew. Chem. Int. Ed. 51, 2198–221 (2012).

    Article  CAS  Google Scholar 

  33. Uchiyama, N., Shirakawa, E. & Hayashi, T. Single electron transfer-induced Grignard cross-coupling involving ion radicals as exclusive intermediates. Chem. Commun. 49, 364–366 (2013).

    Article  CAS  Google Scholar 

  34. Shirakawa, E., Watanabe, R., Murakami, T. & Hayashi, T. Single electron transfer-induced cross-coupling reaction of alkenyl halides with aryl Grignard reagents. Chem. Commun. 49, 5219–5221 (2013).

    Article  CAS  Google Scholar 

  35. Zhou, S. et al. Organic super-electron donors: initiators in transition metal-free haloarene–arene coupling. Chem. Sci. 5, 476–482 (2014).

    Article  CAS  Google Scholar 

  36. Zhao, H., Shen, J., Guo, J., Ye, R. & Zeng, H. A marcocyclic aromatic pyridone pentamer as a highly efficient organocatalyst for the direct arylations of unactivated arenes. Chem. Commun. 49, 2323–2325 (2013).

    Article  CAS  Google Scholar 

  37. Dewanji, A., Murarka, S., Curran, D. P. & Studer, A. Phenyl hydrazine as initiator for direct arene C–H arylation via base promoted homolytic aromatic substitution. Org. Lett. 15, 6102–6105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Budén, M. E., Guastavino, J. F. & Rossi, R. A. Room-temperature photoinduced direct C–H-arylation via base-promoted homolytic aromatic substitution. Org. Lett. 15, 1174–1177 (2013).

    Article  PubMed  CAS  Google Scholar 

  39. Shirakawa, E., Zhang, X. & Hayashi, T. Mizoroki–Heck-type reaction mediated by potassium tert-butoxide. Angew. Chem. Int. Ed. 50, 4671–4674 (2011).

    Article  CAS  Google Scholar 

  40. Sun, C-L., Gu, Y-F., Wang, B. & Shi, Z-J. Direct arylation of alkenes with aryl iodides/bromides through an organocatalytic radical process. Chem. Eur. J. 17, 10844–10847 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Rueping, M., Leiendecker, M., Das, A., Poisson, T. & Bui, L. Potassium tert-butoxide mediated Heck-type cyclization/isomerization-benzofurans from organocatalytic radical cross-coupling reactions. Chem. Commun. 47, 10629–10631 (2011).

    Article  CAS  Google Scholar 

  42. Li, C-J. Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc. Chem. Res. 42, 335–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Yeung, C. S. & Dong, V. M., Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon–hydrogen bonds. Chem. Rev. 111, 1215–1292 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, Y., Wang, J., Mao, F. & Kwong, F. Y. Palladium-catalyzed cross-dehydrogenative functionalization of C(sp2)–H bonds. Chem. Asian. J. 9, 26–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Girard, S. A., Knauber, T. & Li, C-J. The cross-dehydrogenative coupling of Csp3–H bonds: a versatile strategy for C–C bond formations. Angew. Chem. Int. Ed. 53, 74–100 (2014).

    Article  CAS  Google Scholar 

  46. Wertz, S., Leifert, D. & Studer, A. Cross dehydrogenative coupling via base-promoted homolytic aromatic substitution (BHAS): synthesis of fluorenones and xanthones. Org. Lett. 15, 928–931 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Shi, Z. & Glorius, F. Synthesis of fluorenones via quaternary ammonium salt-promoted intramolecular dehydrogenative arylation of aldehydes. Chem. Sci. 4, 829–833 (2013).

    Article  CAS  Google Scholar 

  48. Finkbeiner, P. & Nachtsheim, B. J. Iodine in modern oxidation catalysis. Synthesis 45, 979–999 (2013).

    Article  CAS  Google Scholar 

  49. Leifert, D., Daniliuc, C. G. & Studer, A. 6-Aroylated phenanthridines via base promoted homolytic aromatic substitution (BHAS). Org. Lett. 15, 6286–6289 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Ryu, I., Sonoda, N. & Curran, D. P. Tandem radical reactions of carbon monoxide, isonitriles, and other reagent equivalents of the geminal radical acceptors/radical precursor synthon. Chem. Rev. 96, 177–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Spagnolo, P. & Nanni, D. in Encyclopedia of Radicals in Chemistry, Biology and Materials Vol. 2 (eds Chatgilialoglu, C. & Studer, A.) 1019–1057 (Wiley, 2012).

    Google Scholar 

  52. Eisenberger, P., Gischig, S. & Togni, A. Novel 10-I-3 hypervalent iodine-based compounds for electrophilic trifluoromethylation. Chem. Eur. J. 12, 2579–2586 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Wiehn, M. S., Vinogradova, E. V. & Togni, A. Electrophilic trifluoromethylation of arenes and N-heteroarenes using hypervalent iodine reagents. J. Fluorine Chem. 131, 951–957 (2010).

    Article  CAS  Google Scholar 

  54. Matousek, V., Togni, A., Bizet, V. & Cahard, D. Synthesis of α-CF3-substituted carbonyl compounds with relative and absolute stereocontrol using electrophilic CF3-transfer reagents. Org. Lett. 13, 5762–5765 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, B., Mück-Lichtenfeld, C., Daniliuc, C. G. & Studer, A. 6-Trifluoromethyl-phenanthridines through radical trifluoromethylation of isonitriles. Angew. Chem. Int. Ed. 52, 10792–10795 (2013).

    Article  CAS  Google Scholar 

  56. Wang, Q., Dong, X., Xiao, T. & Zhou, L. PhI(OAc)2-Mediated synthesis of 6-(trifluoromethyl)phenanthridines by oxidative cyclization of 2-isocyanobiphenyls with CF3SiMe3 under metal-free conditions. Org. Lett. 15, 4846–4849 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Studer, A. A 'renaissance' in radical trifluoromethylation. Angew. Chem. Int. Ed. 51, 8950–8958 (2012).

    Article  CAS  Google Scholar 

  58. Ji, Y. et al. Innate C–H trifluoromethylation of heterocycles. Proc. Natl Acad. Sci. USA 108, 14411–14415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, H. et al. Transition-metal-free alkoxycarbonylation of aryl halides. Angew. Chem. Int. Ed. 51, 12542–12545 (2012).

    Article  CAS  Google Scholar 

  60. Chatgilialoglu, C., Crich, D., Komatsu, M. & Ryu, I. Chemistry of acyl radicals. Chem. Rev. 99, 1991–2069 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Matsubara, H., Falzon, C. T., Ryu, I. & Schiesser, C. H. Radical masquerading as electrophiles: a computational study of the intramolecular addition reactions of aryl radicals to imines. Org. Biomol. Chem. 4, 1920–1926 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Saveant, J. M. Catalysis of chemical reactions by electrodes. Acc. Chem. Res. 13, 323–329 (1980).

    Article  CAS  Google Scholar 

  63. Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: Basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Wade, P. A., Morrison, H. A. & Kornblum, N. The effect of light on electron-transfer substitution at a saturated carbon atom. J. Org. Chem. 52, 3102–3107 (1987).

    Article  CAS  Google Scholar 

  65. Haines, B. E. & Wiest, O. SET-induced biaryl cross-coupling: an SRN1 reaction. J. Org. Chem. 79, 2771–2774 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sumino, S., Ui, T. & Ryu I. Synthesis of alkyl aryl ketones by Pd/light induced carbonylative cross-coupling of alkyl iodides and arylboronic acids. Org. Lett. 15, 3142–3145 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.P.C. thanks the NIH and NSF for funding. A.S. thanks the Deutsche Forschungsgemeinschaft and the programme 'Sustainable Chemical Synthesis (SusChemSysc)' which is co-financed by the European Regional Development Fund (ERDF) and the state of North Rhine-Westphalia, Germany, under the Operational Programme 'Regional Competitiveness and Employment' 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Armido Studer or Dennis P. Curran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Studer, A., Curran, D. The electron is a catalyst. Nature Chem 6, 765–773 (2014). https://doi.org/10.1038/nchem.2031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing