Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design principles of the use of alkynes in radical cascades

Abstract

One of the simplest organic functional groups, the alkyne, offers a broad canvas for the design of cascade transformations in which up to three new bonds can be added to each of the two sterically unencumbered, energy-rich carbon atoms. However, kinetic protection provided by strong π-orbital overlap makes the design of new alkyne transformations a stereoelectronic puzzle, especially on multifunctional substrates. This Review describes the electronic properties contributing to the unique utility of alkynes in radical cascades. We describe how to control the selectivity of alkyne activation by various methods, from dynamic covalent chemistry with kinetic self-sorting to disappearing directing groups. Additionally, we demonstrate how the selection of reactive intermediates directly influences the propagation and termination of the cascade. Diverging from a common departure point, a carefully planned reaction route can allow access to a variety of products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Unique characteristics of alkynes.
Fig. 2: Stereoelectronic preferences of alkyne reactions.
Fig. 3: Alkynes versus alkenes and the reversibility of radical additions to alkynes.
Fig. 4: Dynamic covalent chemistry in alkyne radical cascades.
Fig. 5: Alkyne resilience in intermolecular and intramolecular reactions.
Fig. 6: Selectivity in cyclizations with irreversible intermolecular radical addition.
Fig. 7: Other selectivity control strategies in radical cascades of alkynes.

Similar content being viewed by others

References

  1. Shaik, S. et al. Quadruple bonding in C2 and analogous eight-valence electron species. Nat. Chem. 4, 195–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Hermann, M. & Frenking, G. The chemical bond in C2. Chem. Eur. J. 22, 4100–4108 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Alabugin, I. V. & Gold, B. “Two functional groups in one package”: using both alkyne π-bonds in cascade transformations. J. Org. Chem. 78, 7777–7784 (2013). Design and control of cascade transformations utilizing both alkyne π-bonds with the formation of up to six new bonds.

    Article  CAS  PubMed  Google Scholar 

  4. Gharpure, S. J. & Porwal, S. K. Topologically driven tandem radical cyclization-based strategy for the synthesis of oxa- and aza-cages. Tetrahedron Lett. 50, 7162–7165 (2009).

    Article  CAS  Google Scholar 

  5. Tsuchii, K., Doi, M., Hirao, T. & Ogawa, A. Highly selective sequential addition and cyclization reactions involving diphenyl diselenide, an alkyne, and alkenes under visible-light irradiation. Angew. Chem. Int. Edn 42, 3490–3493 (2003).

    Article  CAS  Google Scholar 

  6. Alabugin, I. V. et al. Radical cascade transformations of tris(o-aryleneethynylenes) into substituted benzo[a]indeno[2,1-c]fluorenes. J. Am. Chem. Soc. 130, 11535–11545 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Dorel, R. & Echavarren, A. M. Gold(I)-catalyzed activation of alkynes for the construction of molecular complexity. Chem. Rev. 115, 9028–9072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peng, X.-X. et al. Dioxygen activation via Cu-catalyzed cascade radical reaction: an approach to isoxazoline/cyclic nitrone-featured α-Ketols. ACS Catal. 7, 7830–7834 (2017).

    Article  CAS  Google Scholar 

  9. Pflästerer, D., Rudolph, M. & Hashmi, A. S. K. Gold-catalyzed hydrofunctionalizations and spiroketalizations of alkynes as key steps in total synthesis. Isr. J. Chem. 58, 622–638 (2018).

    Article  Google Scholar 

  10. Yang, W., Zhang, M. & Feng, J. Recent advances in the construction of spiro compounds via radical dearomatization. Adv. Synth. Catal. 362, 4446–4461 (2020).

    Article  CAS  Google Scholar 

  11. Yan, J. et al. A radical Smiles rearrangement promoted by neutral eosin Y as a direct hydrogen atom transfer photocatalyst. J. Am. Chem. Soc. 142, 11357–11362 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Nakayama, Y. et al. Total synthesis of ritterazine B. J. Am. Chem. Soc. 143, 4187–4192 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Le, S. et al. [3+2] cycloaddition of alkyl aldehydes and alkynes enabled by photoinduced hydrogen atom transfer. Nat. Commun. 13, 4734–4742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alabugin, I. V. & Gonzalez-Rodriguez, E. Alkyne origami: folding oligoalkynes into polyaromatics. Acc. Chem. Res. 51, 1206–1219 (2018). Application of alkyne cyclizations for the preparation of carbon-rich molecules and materials.

    Article  CAS  PubMed  Google Scholar 

  15. Nicolaides, A. & Borden, W. T. Ab initio calculations of the relative strengths of the pi bonds in acetylene and ethylene and of their effect on the relative energies of pi-bond addition reactions. J. Am. Chem. Soc. 113, 6750–6755 (1991).

    Article  CAS  Google Scholar 

  16. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Edn 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  17. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Edn 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  18. Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Tron, G. C. et al. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev. 28, 278–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Zeni, G. & Larock, R. C. Synthesis of heterocycles via palladium π-olefin and π-alkyne chemistry. Chem. Rev. 104, 2285–2310 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Godoi, B., Schumacher, R. F. & Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev. 111, 2937–2980 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Luo, Y., Pan, X., Yu, X. & Wu, J. Double carbometallation of alkynes: an efficient strategy for the construction of polycycles. Chem. Soc. Rev. 43, 834–846 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Huang, H.-M., McDouall, J. J. W. & Procter, D. J. SmI2-catalysed cyclization cascades by radical relay. Nat. Catal. 2, 211–218 (2019).

    Article  CAS  Google Scholar 

  25. Sonawane, A. D., Sonawane, R. A., Ninomiya, M. & Koketsu, M. Synthesis of seleno‐heterocycles via electrophilic/radical cyclization of alkyne containing heteroatoms. Adv. Synth. Catal. 362, 3485–3515 (2020).

    Article  CAS  Google Scholar 

  26. Li, M. et al. Divergent synthesis of fused tetracyclic heterocycles from diarylalkynes enabled by the selective insertion of isocyanide. Angew. Chem. Int. Edn 61, e202208203 (2022).

    CAS  Google Scholar 

  27. Yang, X., Wang, G. & Ye, Z.-S. Palladium-catalyzed nucleomethylation of alkynes for synthesis of methylated heteroaromatic compounds. Chem. Sci. 13, 10095–10102 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang, S., Ma, H., Yang, R., Song, X.-R. & Xiao, Q. Recent advances in the cascade reactions of enynols/diynols for the synthesis of carbo- and heterocycles. Org. Chem. Front. 9, 5643–5674 (2022).

    Article  CAS  Google Scholar 

  29. Chernick, E. T. & Tykwinski, R. R. Carbon-rich nanostructures: the conversion of acetylenes into materials: the conversion of acetylenes into materials. J. Phys. Org. Chem. 26, 742–749 (2013).

    Article  CAS  Google Scholar 

  30. Hein, S. J., Lehnherr, D., Arslan, H., J. Uribe-Romo, F. & Dichtel, W. R. Alkyne benzannulation reactions for the synthesis of novel aromatic architectures. Acc. Chem. Res. 50, 2776–2788 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Senese, A. & Chalifoux, W. Nanographene and graphene nanoribbon synthesis via alkyne benzannulations. Molecules 24, 118 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alabugin, I., Gonzalez-Rodriguez, E., Kawade, R., Stepanov, A. & Vasilevsky, S. Alkynes as synthetic equivalents of ketones and aldehydes: a hidden entry into carbonyl chemistry. Molecules 24, 1036 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tsvetkov, N. P. et al. Radical alkyne peri‐annulation reactions for the synthesis of functionalized phenalenes, benzanthrenes, and olympicene. Angew. Chem. Int. Edn 57, 3651–3655 (2018).

    Article  CAS  Google Scholar 

  34. Curran, D. P. The design and application of free radical chain reactions in organic synthesis. Part 1. Synthesis 1988, 417–439 (1988). A comprehensive review of radical reactions, from fundamental factors to applications.

    Article  Google Scholar 

  35. Curran, D. P. The design and application of free radical chain reactions in organic synthesis. Part 2. Synthesis 1988, 489–513 (1988). A comprehensive review of radical reactions, from fundamental factors to applications.

    Article  Google Scholar 

  36. Baldwin, J. E. Rules for ring closure. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39760000734 (1976).

    Article  Google Scholar 

  37. Alabugin, I. V., Gilmore, K. & Manoharan, M. Rules for anionic and radical ring closure of alkynes. J. Am. Chem. Soc. 133, 12608–12623 (2011). A general overview of the preferred patterns of anionic and radical cyclizations of alkyne.

    Article  CAS  PubMed  Google Scholar 

  38. Beckwith, A. L. J., Easton, C. J. & Serelis, A. K. Some guidelines for radical reactions. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/c39800000482 (1980).

    Article  Google Scholar 

  39. Bharucha, K. N., Marsh, R. M., Minto, R. E. & Bergman, R. G. Double cycloaromatization of (Z,Z)-deca-3,7-diene-1,5,9-triyne: evidence for the intermediacy and diradical character of 2,6-didehydronaphthalene. J. Am. Chem. Soc. 114, 3120–3121 (1992).

    Article  CAS  Google Scholar 

  40. Amrein, S. & Studer, A. Intramolecular radical hydrosilylation — the first radical 5-endo-dig cyclisation. Chem. Commun. https://doi.org/10.1039/b204879e (2002).

    Article  Google Scholar 

  41. Alabugin, I. V. et al. In search of efficient 5-endo-dig cyclization of a carbon-centered radical: 40 years from a prediction to another success for the Baldwin rules. J. Am. Chem. Soc. 130, 10984–10995 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Gilmore, K., Mohamed, R. K. & Alabugin, I. V. The Baldwin rules: revised and extended: Baldwin: revised, extended. WIREs Comput. Mol. Sci. 6, 487–514 (2016). A comprehensive review of stereoelectronic preferences for the formation of cyclic molecules.

    Article  CAS  Google Scholar 

  43. Pati, K. et al. Traceless directing groups in radical cascades: from oligoalkynes to fused helicenes without tethered initiators. J. Am. Chem. Soc. 137, 1165–1180 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Pati, K., dos Passos Gomes, G. & Alabugin, I. V. Combining traceless directing groups with hybridization control of radical reactivity: from skipped enynes to defect‐free hexagonal frameworks. Angew. Chem. Int. Edn 55, 11633–11637 (2016).

    Article  CAS  Google Scholar 

  45. Hou, Z.-W., Mao, Z.-Y., Song, J. & Xu, H.-C. Electrochemical synthesis of polycyclic N-heteroaromatics through cascade radical cyclization of diynes. ACS Catal. 7, 5810–5813 (2017).

    Article  CAS  Google Scholar 

  46. Bogen, S., Fensterbank, L. & Malacria, M. Unprecedented radical cyclizations cascade leading to bicyclo[3.1.1]heptanes. Toward a new generation of radical cascades. J. Am. Chem. Soc. 119, 5037–5038 (1997).

    Article  CAS  Google Scholar 

  47. Fujiwara, S. et al. A new entry to α-alkylidene-β-lactams by 4-exo-dig cyclization of carbamoyl radicals. Tetrahedron Lett. 50, 3628–3630 (2009).

    Article  CAS  Google Scholar 

  48. Jacob, C. et al. A general synthesis of azetidines by copper-catalysed photoinduced anti-Baldwin radical cyclization of ynamides. Nat. Commun. 13, 560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, Q. et al. Merging “anti-Baldwin” 3-exo-dig cyclization with 1,2-alkynyl migration for radical alkylalkynylation of unactivated olefins. Org. Lett. 20, 3596–3600 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Qin, Y. et al. Methylation alkynylation of terminal alkenes via 1,2-alkynyl migration using dicumyl peroxide as the methyl source. Synthesis 53, 4700–4708 (2021).

    Article  CAS  Google Scholar 

  51. Zhan, C.-G., Nichols, J. A. & Dixon, D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J. Phys. Chem. A 107, 4184–4195 (2003).

    Article  CAS  Google Scholar 

  52. Giese, B. Formation of CC bonds by addition of free radicals to alkenes. Angew. Chem. Int. Edn Engl. 22, 753–764 (1983).

    Article  Google Scholar 

  53. Ito, O. & Matsuda, M. Evaluation of addition rates of p-chlorobenzenethiyl radical to vinyl monomers by means of flash photolysis. J. Am. Chem. Soc. 101, 1815–1819 (1979).

    Article  CAS  Google Scholar 

  54. Ito, O. & Matsuda, M. Evaluation of addition rates of thiyl radicals to vinyl monomers by flash photolysis. 5. Polar effects in addition reactions of benzenethiyl radicals to substituted styrenes and.alpha.-methylstyrenes determined by flash photolysis. J. Am. Chem. Soc. 104, 1701–1703 (1982).

    Article  CAS  Google Scholar 

  55. Ito, O., Omori, R. & Matsuda, M. Determination of addition rates of benzenethiyl radicals to alkynes by flash photolysis. Structures of produced vinyl-type radicals. J. Am. Chem. Soc. 104, 3934–3937 (1982).

    Article  CAS  Google Scholar 

  56. Gómez-Balderas, R., Coote, M. L., Henry, D. J., Fischer, H. & Radom, L. What is the origin of the contrathermodynamic behavior in methyl radical addition to alkynes versus alkenes? J. Phys. Chem. A 107, 6082–6090 (2003).

    Article  Google Scholar 

  57. Stork, G. & Baine, N. H. Cyclization of vinyl radicals: a versatile method for the construction of five- and six-membered rings. J. Am. Chem. Soc. 104, 2321–2323 (1982).

    Article  CAS  Google Scholar 

  58. Stork, G. & Mook, R. Five vs six membered ring formation in the vinyl radical cyclization. Tetrahedron Lett. 27, 4529–4532 (1986).

    Article  CAS  Google Scholar 

  59. Beckwith, A. L. J. & O’Shea, D. M. Kinetics and mechanism of some vinyl radical cyclisations. Tetrahedron Lett. 27, 4525–4528 (1986).

    Article  CAS  Google Scholar 

  60. Peabody, S. W. Tributyltin Mediated Radical Cyclizations Of Enediynes And Their Subsequent Transformation To Fulvenes And Indenes (Florida State Univ., 2004).

  61. Stork, G. & Mook, R. Vinyl radical cyclizations mediated by the addition of stannyl radicals to triple bonds. J. Am. Chem. Soc. 109, 2829–2831 (1987).

    Article  CAS  Google Scholar 

  62. Wille, U. Radical cascades initiated by intermolecular radical addition to alkynes and related triple bond systems. Chem. Rev. 113, 813–853 (2013). A comprehensive review of alkyne cyclizations in radical cascades.

    Article  CAS  PubMed  Google Scholar 

  63. Xuan, J. & Studer, A. Radical cascade cyclization of 1,n-enynes and diynes for the synthesis of carbocycles and heterocycles. Chem. Soc. Rev. 46, 4329–4346 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Plesniak, M. P., Huang, H.-M. & Procter, D. J. Radical cascade reactions triggered by single electron transfer. Nat. Rev. Chem. 1, 0077 (2017). A general discussion of recent approaches for the initiation of radical cascades.

    Article  Google Scholar 

  65. Huang, M.-H., Hao, W.-J., Li, G., Tu, S.-J. & Jiang, B. Recent advances in radical transformations of internal alkynes. Chem. Commun. 54, 10791–10811 (2018).

    Article  CAS  Google Scholar 

  66. Huang, M.-H., Hao, W.-J. & Jiang, B. Recent advances in radical-enabled bicyclization and annulation/1,n-bifunctionalization reactions. Chem. Asian J. 13, 2958–2977 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Li, Y., Pan, G.-A., Luo, M.-J. & Li, J.-H. Radical-mediated oxidative annulations of 1,n-enynes involving C–H functionalization. Chem. Commun. 56, 6907–6924 (2020).

    Article  CAS  Google Scholar 

  68. Yue, X., Hu, M., He, X., Wu, S. & Li, J.-H. A radical-mediated 1,3,4-trifunctionalization cascade of 1,3-enynes with sulfinates and tert -butyl nitrite: facile access to sulfonyl isoxazoles. Chem. Commun. 56, 6253–6256 (2020).

    Article  CAS  Google Scholar 

  69. Zhao, M. et al. Iron-catalyzed hydrogen atom transfer induced cyclization of 1,6-enynes for the synthesis of ketoximes: a combined experimental and computational study. Org. Chem. Front. 8, 643–652 (2021).

    Article  CAS  Google Scholar 

  70. Liao, J. et al. Recent advances in cascade radical cyclization of radical acceptors for the synthesis of carbo- and heterocycles. Org. Chem. Front. 8, 1345–1363 (2021).

    Article  CAS  Google Scholar 

  71. Tomanik, M. et al. Development of an enantioselective synthesis of (−)-euonyminol. J. Org. Chem. 86, 17011–17035 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Xu, J. et al. Providing direction for mechanistic inferences in radical cascade cyclization using a transformer model. Org. Chem. Front. 9, 2498–2508 (2022).

    Article  CAS  Google Scholar 

  73. Baguley, P. A. & Walton, J. C. Flight from the tyranny of tin: the quest for practical radical sources free from metal encumbrances. Angew. Chem. Int. Edn 37, 3072–3082 (1998).

    Article  CAS  Google Scholar 

  74. Crespi, S. & Fagnoni, M. Generation of alkyl radicals: from the tyranny of tin to the photon democracy. Chem. Rev. 120, 9790–9833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mohamed, R. K. et al. Alkenes as alkyne equivalents in radical cascades terminated by fragmentations: overcoming stereoelectronic restrictions on ring expansions for the preparation of expanded polyaromatics. J. Am. Chem. Soc. 137, 6335–6349 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Lambert, J. B. et al. The β effect of silicon and related manifestations of σ conjugation. Acc. Chem. Res. 32, 183–190 (1999).

    Article  CAS  Google Scholar 

  77. Gold, B., Shevchenko, N. E., Bonus, N., Dudley, G. B. & Alabugin, I. V. Selective transition state stabilization via hyperconjugative and conjugative assistance: stereoelectronic concept for copper-free click chemistry. J. Org. Chem. 77, 75–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Melandri, D., Montevecchi, P. C. & Navacchia, M. L. Thiol radical addition to alkynes. Sulfanyl radical addition and hydrogen atom abstraction relative reaction rates. Tetrahedron 55, 12227–12236 (1999).

    Article  CAS  Google Scholar 

  79. Dong, X. et al. Radical-mediated vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes. Chem. Sci. 12, 11762–11768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Edn 41, 898–952 (2002).

    Article  Google Scholar 

  81. Mondal, S., Mohamed, R. K., Manoharan, M., Phan, H. & Alabugin, I. V. Drawing from a pool of radicals for the design of selective enyne cyclizations. Org. Lett. 15, 5650–5653 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Njardarson, J. T., McDonald, I. M., Spiegel, D. A., Inoue, M. & Wood, J. L. An expeditious approach toward the total synthesis of CP-263,114. Org. Lett. 3, 2435–2438 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Cossy, J., Pévet, I. & Meyer, C. Total synthesis of (−)-4a,5-dihydrostreptazolin. Eur. J. Org. Chem. 2001, 2841–2850 (2001).

    Article  Google Scholar 

  84. Muratake, H. & Natsume, M. Total synthesis of (±)-nominine, a heptacyclic hetisine-type aconite alkaloid. Angew. Chem. Int. Edn 43, 4646–4649 (2004).

    Article  CAS  Google Scholar 

  85. Kaliappan, K. P. & Ravikumar, V. An expedient enantioselective strategy for the oxatetracyclic core of platensimycin. Org. Lett. 9, 2417–2419 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. He, W., Huang, J., Sun, X. & Frontier, A. J. Total synthesis of (±)-merrilactone A. J. Am. Chem. Soc. 130, 300–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Logan, M. M., Toma, T., Thomas-Tran, R. & Du Bois, J. Asymmetric synthesis of batrachotoxin: enantiomeric toxins show functional divergence against NaV. Science 354, 865–869 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Karras, M. et al. Asymmetric synthesis of nonracemic 2-amino[6]helicenes and their self-assembly into Langmuir films. J. Org. Chem. 83, 5523–5538 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Marco-Contelles, J. Synthesis of polycyclic molecules via cascade radical carbocyclizations of dienynes: the first SnPh3 radical-mediated [2 + 2 + 2] formal cycloaddition of dodeca-1,6-dien-11-ynes. Chem. Commun. https://doi.org/10.1039/CC9960002629 (1996).

    Article  Google Scholar 

  90. Pati, K. et al. Synthesis of functionalized phenanthrenes via regioselective oxidative radical cyclization. J. Org. Chem. 80, 11706–11717 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Majumdar, K. C., Ray, K., Debnath, P., Maji, P. K. & Kundu, N. Thiophenol-mediated intramolecular radical cyclization: an efficient method for the synthesis of benzoxocine derivatives. Tetrahedron Lett. 49, 5597–5600 (2008).

    Article  CAS  Google Scholar 

  92. Majumdar, K. C. & Taher, A. Wittig olefination and thiol mediated 7-endo-trig radical cyclization: novel synthesis of oxepin derivatives. Tetrahedron Lett. 50, 228–231 (2009).

    Article  CAS  Google Scholar 

  93. Fu, R. et al. Sulfonyl radical-enabled 6-endo-trig cyclization for regiospecific synthesis of unsymmetrical diaryl sulfones. Org. Chem. Front. 3, 1452–1456 (2016).

    Article  CAS  Google Scholar 

  94. Chen, Z.-Z. et al. Catalytic arylsulfonyl radical-triggered 1,5-enyne-bicyclizations and hydrosulfonylation of α,β-conjugates. Chem. Sci. 6, 6654–6658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mutra, M. R., Kudale, V. S., Li, J., Tsai, W.-H. & Wang, J.-J. Alkene versus alkyne reactivity in unactivated 1,6-enynes: regio- and chemoselective radical cyclization with chalcogens under metal- and oxidant-free conditions. Green. Chem. 22, 2288–2300 (2020).

    Article  CAS  Google Scholar 

  96. Ervin, K. M. et al. Bond strengths of ethylene and acetylene. J. Am. Chem. Soc. 112, 5750–5759 (1990).

    Article  CAS  Google Scholar 

  97. Robinson, M. S., Polak, M. L., Bierbaum, V. M., DePuy, C. H. & Lineberger, W. C. Experimental studies of allene, methylacetylene, and the propargyl radical: bond dissociation energies, gas-phase acidities, and ion–molecule chemistry. J. Am. Chem. Soc. 117, 6766–6778 (1995).

    Article  CAS  Google Scholar 

  98. Xie, J. et al. A highly efficient gold-catalyzed photoredox α-C(sp3)-H alkynylation of tertiary aliphatic amines with sunlight. Angew. Chem. Int. Edn 54, 6046–6050 (2015).

    Article  CAS  Google Scholar 

  99. Martelli, G., Spagnolo, P. & Tiecco, M. Homolytic aromatic substitution by phenylethynyl radicals. J. Chem. Soc. D https://doi.org/10.1039/C2969000282B (1969).

    Article  Google Scholar 

  100. Martelli, G., Spagnolo, P. & Tiecco, M. Homolytic aromatic substitution by phenylethynyl radicals. J. Chem. Soc. B 0, 1413–1418 (1970).

    Article  CAS  Google Scholar 

  101. Le Vaillant, F. & Waser, J. Alkynylation of radicals: spotlight on the “third way” to transfer triple bonds. Chem. Sci. 10, 8909–8923 (2019). A perspective on radical approaches to alkynylation.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Cozzi, P. G., Hilgraf, R. & Zimmermann, N. Acetylenes in catalysis: enantioselective additions to carbonyl groups and imines and applications beyond. Eur. J. Org. Chem. 2004, 4095–4105 (2004).

    Article  Google Scholar 

  103. Trost, B. M. & Weiss, A. H. The enantioselective addition of alkyne nucleophiles to carbonyl groups. Adv. Synth. Catal. 351, 963–983 (2009).

    Article  CAS  Google Scholar 

  104. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Edn Engl. 18, 239–258 (1979).

    Article  Google Scholar 

  105. Russell, G. A. & Ngoviwatchai, P. Free radical substitution reactions of phenylacetylene derivatives by an addition–elimination mechanism. Tetrahedron Lett. 27, 3479–3482 (1986).

    Article  CAS  Google Scholar 

  106. Russell, G. A., Ngoviwatchai, P., Tashtoush, H. I., Pla-Dalmau, A. & Khanna, R. K. Reactions of alkylmercurials with heteroatom-centered acceptor radicals. J. Am. Chem. Soc. 110, 3530–3538 (1988).

    Article  CAS  Google Scholar 

  107. Russell, G. A. & Ngoviwatchai, P. Substitution reactions in the.beta.-styryl and phenylethynyl systems. J. Org. Chem. 54, 1836–1842 (1989).

    Article  CAS  Google Scholar 

  108. Gong, J. & Fuchs, P. L. Alkynylation of C−H bonds via reaction with acetylenic triflones. J. Am. Chem. Soc. 118, 4486–4487 (1996).

    Article  CAS  Google Scholar 

  109. Schaffner, A.-P., Darmency, V. & Renaud, P. Radical-mediated alkenylation, alkynylation, methanimination, and cyanation of B-alkylcatecholboranes. Angew. Chem. Int. Edn 45, 5847–5849 (2006).

    Article  CAS  Google Scholar 

  110. Zhang, Q. et al. Radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters enabled by a carbon shift from an all-carbon quaternary center. Chem. Sci. 13, 6836–6841 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, W., Li, L. & Li, C.-J. Empowering a transition-metal-free coupling between alkyne and alkyl iodide with light in water. Nat. Commun. 6, 6526 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, X., Wang, Z., Cheng, X. & Li, C. Silver-catalyzed decarboxylative alkynylation of aliphatic carboxylic acids in aqueous solution. J. Am. Chem. Soc. 134, 14330–14333 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Huang, H., Zhang, G., Gong, L., Zhang, S. & Chen, Y. Visible-light-induced chemoselective deboronative alkynylation under biomolecule-compatible conditions. J. Am. Chem. Soc. 136, 2280–2283 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Han, W.-J. et al. Cu-catalyzed oxyalkynylation and aminoalkynylation of unactivated alkenes: synthesis of alkynyl-featured isoxazolines and cyclic nitrones. Org. Lett. 20, 2960–2963 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Han, W.-J. et al. Sequential catalytic annulations: divergent synthesis of heterocycles through a radical [1,4]-oxygen shift. Org. Lett. 24, 542–547 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Yang, Y., Daniliuc, C. G. & Studer, A. 1,1,2‐Trifunctionalization of terminal alkynes by radical addition–translocation–cyclization–trapping for the construction of highly substituted cyclopentanes. Angew. Chem. Int. Edn 60, 2145–2148 (2021).

    Article  CAS  Google Scholar 

  117. Xu, Y., Wu, Z., Jiang, J., Ke, Z. & Zhu, C. Merging distal alkynyl migration and photoredox catalysis for radical trifluoromethylative alkynylation of unactivated olefins. Angew. Chem. 129, 4616–4619 (2017).

    Article  Google Scholar 

  118. Tang, X. & Studer, A. α-Perfluoroalkyl-β-alkynylation of alkenes via radical alkynyl migration. Chem. Sci. 8, 6888–6892 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao, Q. et al. Photocatalytic annulation–alkynyl migration strategy for multiple functionalization of dual unactivated alkenes. Org. Lett. 21, 9784–9789 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Jin, S., Sun, S., Yu, J.-T. & Cheng, J. The silver-promoted phosphonation/alkynylation of alkene proceeding with radical 1,2-alkynyl migration. J. Org. Chem. 84, 11177–11185 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, M., Zhang, H., Liu, J., Wu, X. & Zhu, C. Radical monofluoroalkylative alkynylation of olefins by a docking–migration strategy. Angew. Chem. Int. Edn 58, 17646–17650 (2019).

    Article  CAS  Google Scholar 

  122. Gao, P. et al. Copper-catalyzed trifluoromethylation-cyclization of enynes: highly regioselective construction of trifluoromethylated carbocycles and heterocycles. Chem. Eur. J. 19, 14420–14424 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, L., Li, Z. & Liu, Z.-Q. A free-radical cascade trifluoromethylation/cyclization of N-arylmethacrylamides and enynes with sodium trifluoromethanesulfinate and iodine pentoxide. Org. Lett. 16, 3688–3691 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. He, Y.-T. et al. Copper-catalyzed three-component cyanotrifluoromethylation/azidotrifluoromethylation and carbocyclization of 1,6-enynes. Org. Lett. 16, 3896–3899 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. An, Y., Kuang, Y. & Wu, J. Synthesis of trifluoromethylated 3,4-dihydroquinolin-2(1H)-ones via a photo-induced radical cyclization of benzene-tethered 1,7-enynes with Togni reagent. Org. Chem. Front. 3, 994–998 (2016).

    Article  CAS  Google Scholar 

  126. Meng, Q., Chen, F., Yu, W. & Han, B. Copper-catalyzed cascade cyclization of 1,7-enynes toward trifluoromethyl-substituted 1′H-spiro[azirine-2,4′-quinolin]-2′(3′H)-ones. Org. Lett. 19, 5186–5189 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Yu, L.-Z., Wei, Y. & Shi, M. Copper-catalyzed trifluoromethylazidation and rearrangement of aniline-linked 1,7-enynes: access to CF3-substituted azaspirocyclic dihydroquinolin-2-ones and furoindolines. Chem. Commun. 53, 8980–8983 (2017).

    Article  CAS  Google Scholar 

  128. Wille, U., Heuger, G. & Jargstorff, C. N-centered radicals in self-terminating radical cyclizations: experimental and computational studies. J. Org. Chem. 73, 1413–1421 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, Y., Zhang, J.-L., Song, R.-J., Qian, P.-C. & Li, J.-H. Cascade nitration/cyclization of 1,7-enynes with t BuONO and H2O: one-pot self-assembly of pyrrolo[4,3,2-de]quinolinones. Angew. Chem. Int. Edn 53, 9017–9020 (2014).

    Article  CAS  Google Scholar 

  130. Fuentes, N., Kong, W., Fernández-Sánchez, L., Merino, E. & Nevado, C. Cyclization cascades via N-amidyl radicals toward highly functionalized heterocyclic scaffolds. J. Am. Chem. Soc. 137, 964–973 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Chen, L. et al. 1,4-Alkylcarbonylation of 1,3-enynes to access tetra-substituted allenyl ketones via an NHC-catalyzed radical relay. ACS Catal. 11, 13363–13373 (2021).

    Article  CAS  Google Scholar 

  132. Zhu, X. et al. Copper-catalyzed radical 1,4-difunctionalization of 1,3-enynes with alkyl diacyl peroxides and N-fluorobenzenesulfonimide. J. Am. Chem. Soc. 141, 548–559 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Song, Y., Fu, C. & Ma, S. Copper-catalyzed syntheses of multiple functionalizatized allenes via three-component reaction of enynes. ACS Catal. 11, 10007–10013 (2021).

    Article  CAS  Google Scholar 

  134. Wang, F. et al. Divergent synthesis of CF3-substituted allenyl nitriles by ligand-controlled radical 1,2- and 1,4-addition to 1,3-enynes. Angew. Chem. Int. Edn 57, 7140–7145 (2018).

    Article  CAS  Google Scholar 

  135. Wang, L., Ma, R., Sun, J., Zheng, G. & Zhang, Q. NHC and visible light-mediated photoredox co-catalyzed 1,4-sulfonylacylation of 1,3-enynes for tetrasubstituted allenyl ketones. Chem. Sci. 13, 3169–3175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang, K. et al. Nickel‐catalyzed carbofluoroalkylation of 1,3‐enynes to access structurally diverse fluoroalkylated allenes. Angew. Chem. Int. Edn 58, 5069–5074 (2019).

    Article  CAS  Google Scholar 

  137. Muresan, M., Subramanian, H., Sibi, M. P. & Green, J. R. Propargyl radicals in organic synthesis. Eur. J. Org. Chem. 2021, 3359–3375 (2021).

    Article  CAS  Google Scholar 

  138. Liu, Y.-Q. et al. Radical acylalkylation of 1,3-enynes to access allenic ketones via N-heterocyclic carbene organocatalysis. J. Org. Chem. 87, 5229–5241 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Chen, Y., Zhu, K., Huang, Q. & Lu, Y. Regiodivergent sulfonylarylation of 1,3-enynes via nickel/photoredox dual catalysis. Chem. Sci. 12, 13564–13571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zeng, Y. et al. Copper-catalyzed enantioselective radical 1,4-difunctionalization of 1,3-enynes. J. Am. Chem. Soc. 142, 18014–18021 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Dong, X. et al. Copper‐catalyzed asymmetric coupling of allenyl radicals with terminal alkynes to access tetrasubstituted allenes. Angew. Chem. Int. Edn 60, 2160–2164 (2021).

    Article  CAS  Google Scholar 

  142. Zhang, F.-H., Guo, X., Zeng, X. & Wang, Z. Asymmetric 1,4-functionalization of 1,3-enynes via dual photoredox and chromium catalysis. Nat. Commun. 13, 5036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Luo, J.-Y. et al. Metal-free cascade radical cyclization of 1,6-enynes with aldehydes. Chem. Commun. 50, 1564 (2014).

    Article  CAS  Google Scholar 

  144. Hao, X.-H. et al. Metal-free nitro-carbocyclization of 1,6-enynes with tBuONO and TEMPO. Chem. Commun. 51, 6839–6842 (2015).

    Article  CAS  Google Scholar 

  145. Ren, S.-C. et al. Radical borylation/cyclization cascade of 1,6-enynes for the synthesis of boron-handled hetero- and carbocycles. J. Am. Chem. Soc. 139, 6050–6053 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Curran, D. P. et al. Synthesis and reactions of N-heterocyclic carbene boranes. Angew. Chem. Int. Edn 50, 10294–10317 (2011).

    Article  CAS  Google Scholar 

  147. Huang, C., Chattopadhyay, B. & Gevorgyan, V. Silanol: a traceless directing group for Pd-catalyzed o-alkenylation of phenols. J. Am. Chem. Soc. 133, 12406–12409 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Daugulis, O., Roane, J. & Tran, L. D. Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc. Chem. Res. 48, 1053–1064 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wu, Y., Pi, C., Wu, Y. & Cui, X. Directing group migration strategy in transition-metal-catalysed direct C–H functionalization. Chem. Soc. Rev. 50, 3677–3689 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Lam, N. Y. S. et al. Empirical guidelines for the development of remote directing templates through quantitative and experimental analyses. J. Am. Chem. Soc. 144, 2793–2803 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhou, Z. et al. Localized antiaromaticity hotspot drives reductive dehydrogenative cyclizations in bis- and mono-helicenes. J. Am. Chem. Soc. 144, 12321–12338 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Harris, T., Gomes, G., dos, P., Clark, R. J. & Alabugin, I. V. Domino fragmentations in traceless directing groups of radical cascades: evidence for the formation of alkoxy radicals via C–O scission. J. Org. Chem. 81, 6007–6017 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Ensley, H. E., Buescher, R. R. & Lee, K. Reaction of organotin hydrides with acetylenic alcohols. J. Org. Chem. 47, 404–408 (1982).

    Article  CAS  Google Scholar 

  155. Nativi, C. & Taddei, M. Some observations on the stereochemical and regiochemical outcome of hydrostannylation of substituted propargyl alcohols. J. Org. Chem. 53, 820–826 (1988).

    Article  CAS  Google Scholar 

  156. Bénéchie, M., Skrydstrup, T. & Khuong-Huu, F. From disubstituted acetylenes to trisubstituted olefins. An application. Tetrahedron Lett. 32, 7535–7538 (1991).

    Article  Google Scholar 

  157. Konoike, T. & Araki, Y. Concise allene synthesis from propargylic alcohols by hydrostannation and deoxystannylation: a new route to chiral allenes. Tetrahedron Lett. 33, 5093–5096 (1992).

    Article  CAS  Google Scholar 

  158. Addi, K., Skrydstrup, T., Bénéchie, M. & Khuong-Huu, F. Stereoselective allylic transposition by means of allylic n-pentenyl ethers. Tetrahedron Lett. 34, 6407–6410 (1993).

    Article  CAS  Google Scholar 

  159. Betzer, J.-F., Delaloge, F., Muller, B., Pancrazi, A. & Prunet, J. Radical hydrostannylation, Pd(0)-catalyzed hydrostannylation, stannylcupration of propargyl alcohols and enynols: regio- and stereoselectivities. J. Org. Chem. 62, 7768–7780 (1997).

    Article  CAS  Google Scholar 

  160. Micoine, K. et al. Total syntheses and biological reassessment of lactimidomycin, isomigrastatin and congener glutarimide antibiotics. Chem. Eur. J. 19, 7370–7383 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Willem, R. et al. Synthesis, X-ray diffraction analysis and NMR studies of (Z)-2-methyl-3-triphenylstannyl-3-pentene-2-ol. J. Organomet. Chem. 480, 255–259 (1994).

    Article  CAS  Google Scholar 

  162. Dimopoulos, P., George, J., Tocher, D. A., Manaviazar, S. & Hale, K. J. Mechanistic studies on the O-directed free-radical hydrostannation of disubstituted acetylenes with Ph3SnH and Et3B and on the iodination of allylically oxygenated α-triphenylstannylalkenes. Org. Lett. 7, 5377–5380 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Dimopoulos, P. et al. O-directed free-radical hydrostannations of propargyl ethers, acetals, and alcohols with Ph3SnH and Et3B. Org. Lett. 7, 5369–5372 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Dimopoulos, P., Athlan, A., Manaviazar, S. & Hale, K. J. On the stereospecific conversion of proximally-oxygenated trisubstituted vinyltriphenylstannanes into stereodefined trisubstituted alkenes. Org. Lett. 7, 5373–5376 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Hale, K. J., Grabski, M., Manaviazar, S. & Maczka, M. Asymmetric total synthesis of (+)-inthomycin C via O-directed free radical alkyne hydrostannation with Ph3SnH and catalytic Et3B: reinstatement of the Zeeck–Taylor (3R)-structure for (+)-inthomycin C. Org. Lett. 16, 1164–1167 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Manaviazar, S., Hale, K. J. & LeFranc, A. Enantioselective formal total synthesis of the dendrobatidae frog toxin, (+)-pumiliotoxin B, via O-directed alkyne free radical hydrostannation. Tetrahedron Lett. 52, 2080–2084 (2011).

    Article  CAS  Google Scholar 

  167. Hale, K. J., Manaviazar, S. & Watson, H. A. The O‐directed free radical hydrostannation of propargyloxy dialkyl acetylenes with Ph3SnH/cat. Et3B. A refutal of the stannylvinyl cation mechanism. Chem. Rec. 19, 238–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Wang, X. et al. A radical cascade enabling collective syntheses of natural products. Chem 2, 803–816 (2017).

    Article  CAS  Google Scholar 

  169. Curran, D. P. & Rakiewicz, D. M. Tandem radical approach to linear condensed cyclopentanoids. Total synthesis of (+)-hirsutene. J. Am. Chem. Soc. 107, 1448–1449 (1985).

    Article  CAS  Google Scholar 

  170. Curran, D. P. & Chen, M. H. Atom transfer cycloaddition. A facile preparation of functionalized (methylene)cyclopentanes. J. Am. Chem. Soc. 109, 6558–6560 (1987).

    Article  CAS  Google Scholar 

  171. Gomes, G., dos, P., Loginova, Y., Vatsadze, S. Z. & Alabugin, I. V. Isonitriles as stereoelectronic chameleons: the donor–acceptor dichotomy in radical additions. J. Am. Chem. Soc. 140, 14272–14288 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Curran, D. P. & Liu, H. New 4 + 1 radical annulations. A formal total synthesis of (±)-camptothecin. J. Am. Chem. Soc. 114, 5863–5864 (1992).

    Article  CAS  Google Scholar 

  173. Pati, K., Hughes, A. M., Phan, H. & Alabugin, I. V. Exo-dig radical cascades of skipped enediynes: building a naphthalene moiety within a polycyclic framework. Chem. Eur. J. 20, 390–393 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Kawade, R. K. et al. Phenalenannulations: three‐point double annulation reactions that convert benzenes into pyrenes. Angew. Chem. Int. Edn 59, 14352–14357 (2020).

    Article  CAS  Google Scholar 

  175. Vasilevsky, S. F., Baranov, D. S., Mamatyuk, V. I., Gatilov, Y. V. & Alabugin, I. V. An unexpected rearrangement that disassembles alkyne moiety through formal nitrogen atom insertion between two acetylenic carbons and related cascade transformations: new approach to Sampangine derivatives and polycyclic aromatic amides. J. Org. Chem. 74, 6143–6150 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Roy, S. et al. Dissecting alkynes: full cleavage of polarized C≡C moiety via sequential bis-Michael addition/retro-Mannich cascade. J. Org. Chem. 76, 7482–7490 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Vasilevsky, S. F. et al. Full cleavage of C≡C bond in electron-deficient alkynes via reaction with ethylenediamine. Aust. J. Chem. 70, 421 (2017).

    Article  CAS  Google Scholar 

  178. Umezu, S. et al. Regioselective one‐pot synthesis of triptycenes via triple‐cycloadditions of arynes to ynolates. Angew. Chem. Int. Edn 56, 1298–1302 (2017).

    Article  CAS  Google Scholar 

  179. Mohamed, R. K. et al. Alkynes as linchpins for the additive annulation of biphenyls: convergent construction of functionalized fused helicenes. Angew. Chem. Int. Edn 128, 12233–12237 (2016).

    Article  Google Scholar 

  180. Newcomb, M., Glenn, A. G. & Williams, W. G. Rate constants and Arrhenius functions for rearrangements of the 2,2-dimethyl-3-butenyl and (2,2-dimethylcyclopropyl)methyl radicals. J. Org. Chem. 54, 2675–2681 (1989).

    Article  CAS  Google Scholar 

  181. Beckwith, A. L. J. & Bowry, V. W. Kinetics and regioselectivity of ring opening of substituted cyclopropylmethyl radicals. J. Org. Chem. 54, 2681–2688 (1989).

    Article  CAS  Google Scholar 

  182. Nagarjuna, G., Ren, Y. & Moore, J. S. Synthesis and reactivity of anthracenyl-substituted arenediynes. Tetrahedron Lett. 56, 3155–3159 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Science Foundation (CHE-2102579). We thank E. Gonzalez-Rodriguez, R. K. Kawade, N. R. Dos Santos and A. Palazzo for early contributions to this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. C.H. and I.V.A. contributed substantially to discussion of the content. C.H. and I.V.A. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Igor V. Alabugin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Yifeng Wang, Bing Han and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Mena, J. & Alabugin, I.V. Design principles of the use of alkynes in radical cascades. Nat Rev Chem 7, 405–423 (2023). https://doi.org/10.1038/s41570-023-00479-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00479-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing