Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins

Abstract

DNA–protein conjugates are important in bioanalytical chemistry, molecular diagnostics and bionanotechnology, as the DNA provides a unique handle to identify, functionalize or otherwise manipulate proteins. To maintain protein activity, conjugation of a single DNA handle to a specific location on the protein is often needed. However, preparing such high-quality site-specific conjugates often requires genetically engineered proteins, which is a laborious and technically challenging approach. Here we demonstrate a simpler method to create site-selective DNA–protein conjugates. Using a guiding DNA strand modified with a metal-binding functionality, we directed a second DNA strand to the vicinity of a metal-binding site of His6-tagged or wild-type metal-binding proteins, such as serotransferrin, where it subsequently reacted with lysine residues at that site. This method, DNA-templated protein conjugation, facilitates the production of site-selective protein conjugates, and also conjugation to IgG1 antibodies via a histidine cluster in the constant domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expanding the concept of DTS for site-selective conjugation of DNA to proteins.
Figure 2: Site-selective DNA-templated coupling of an activated ester to His6-tagged GFP.
Figure 3: DTPC labelling of Tf and cellular uptake of the conjugate.
Figure 4: Targeting the Fc domain histidine cluster of IgG1 antibodies.

Similar content being viewed by others

References

  1. Niemeyer, C. M. Semisynthetic DNA–protein conjugates for biosensing and nanofabrication. Angew. Chem. Int. Ed. 49, 1200–1216 (2010).

    Article  CAS  Google Scholar 

  2. Stephanopoulos, N. & Francis, M. B. Choosing an effective protein bioconjugation strategy. Nature Chem. Biol. 7, 876–884 (2011).

    CAS  Google Scholar 

  3. Corey, D. R. & Schultz, P. G. Generation of a hybrid sequence-specific single-stranded deoxyribonuclease. Science 238, 1401–1403 (1987).

    Article  CAS  Google Scholar 

  4. Saghatelian, A., Guckian, K. M., Thayer, D. A. & Ghadiri, M. R. DNA detection and signal amplification via an engineered allosteric enzyme. J. Am. Chem. Soc. 125, 344–345 (2003).

    Article  CAS  Google Scholar 

  5. Howorka, S., Cheley, S. & Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nature Biotechnol. 19, 636–639 (2001).

    Article  CAS  Google Scholar 

  6. Rabuka, D., Rush, J. S., deHart, G. W., Wu, P. & Bertozzi, C. R. Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nature Protoc. 7, 1052–1067 (2012).

    Article  CAS  Google Scholar 

  7. Kazane, S. A. et al. Site-specific DNA–antibody conjugates for specific and sensitive immuno-PCR. Proc. Natl Acad. Sci. USA 109, 3731–3736 (2012).

    Article  CAS  Google Scholar 

  8. Kazane, S. A. et al. Self-assembled antibody multimers through peptide nucleic acid conjugation. J. Am. Chem. Soc. 135, 340–346 (2013).

    Article  CAS  Google Scholar 

  9. Netirojjanakul, C. et al. Synthetically modified Fc domains as building blocks for immunotherapy applications. Chem. Sci. 4, 266–272 (2013).

    Article  CAS  Google Scholar 

  10. Barbuto, S. et al. Induction of innate and adaptive immunity by delivery of poly dA:dT to dendritic cells. Nature Chem. Biol. 9, 250–256 (2013).

    Article  CAS  Google Scholar 

  11. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nature Biotechnol. 21, 86–89 (2003).

    Article  CAS  Google Scholar 

  12. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  Google Scholar 

  13. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    Article  CAS  Google Scholar 

  14. Niemeyer, C. M., Sano, T., Smith, C. L. & Cantor, C. R. Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA–streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res. 22, 5530–5539 (1994).

    Article  CAS  Google Scholar 

  15. Tsukiji, S., Miyagawa, M., Takaoka, Y., Tamura, T. & Hamachi, I. Ligand-directed tosyl chemistry for protein labeling in vivo. Nature Chem. Biol. 5, 341–343 (2009).

    Article  CAS  Google Scholar 

  16. Hughes, C. C. et al. Marinopyrrole A target elucidation by acyl dye transfer. J. Am. Chem. Soc. 131, 12094–12096 (2009).

    Article  CAS  Google Scholar 

  17. Uchinomiya, S-H. et al. Site-specific covalent labeling of His-tag fused proteins with a reactive Ni(II)–NTA probe. Chem. Commun. 5880–5882 (2009).

  18. Koshi, Y. et al. Target-specific chemical acylation of lectins by ligand-tethered DMAP catalysts. J. Am. Chem. Soc. 130, 245–251 (2008).

    Article  CAS  Google Scholar 

  19. Meredith, G. D., Wu, H. Y. & Allbritton, N. L. Targeted protein functionalization using His-tags. Bioconjugate Chem. 15, 969–982 (2004).

    Article  CAS  Google Scholar 

  20. Li, G. et al. Photoaffinity labeling of small-molecule-binding proteins by DNA-templated chemistry. Angew. Chem. Int. Ed. 52, 9544–9549 (2013).

    Article  CAS  Google Scholar 

  21. Vinkenborg, J. L., Mayer, G. & Famulok, M. Aptamer-based affinity labeling of proteins. Angew. Chem. Int. Ed. 51, 9176–9180 (2012).

    Article  CAS  Google Scholar 

  22. Li, X. & Liu, D. R. DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Ed. 43, 4848–4870 (2004).

    Article  CAS  Google Scholar 

  23. Goodman, R. P. et al. A facile method for reversibly linking a recombinant protein to DNA. ChemBioChem 10, 1551–1557 (2009).

    Article  CAS  Google Scholar 

  24. Snyder, T. M. & Liu, D. R. Ordered multistep synthesis in a single solution directed by DNA templates. Angew. Chem. Int. Ed. 44, 7379–7382 (2005).

    Article  CAS  Google Scholar 

  25. Hemdan, E. S., Zhao, Y. J., Sulkowski, E. & Porath, J. Surface topography of histidine residues: a facile probe by immobilized metal ion affinity chromatography. Proc. Natl Acad. Sci. USA 86, 1811–1815 (1989).

    Article  CAS  Google Scholar 

  26. Waldron, K. J., Rutherford, J. C., Ford, D. & Robinson, N. J. Metalloproteins and metal sensing. Nature 460, 823–830 (2009).

    Article  CAS  Google Scholar 

  27. Aisen, P. & Listowsky, I. Iron transport and storage proteins. Annu. Rev. Biochem. 49, 357–393 (1980).

    Article  CAS  Google Scholar 

  28. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  Google Scholar 

  29. Tran, T. N. N. et al. A universal DNA-based protein detection system. J. Am. Chem. Soc. 135, 14008–14011 (2013).

    Article  CAS  Google Scholar 

  30. Rudchenko, M. et al. Autonomous molecular cascades for evaluation of cell surfaces. Nature Nanotech. 8, 580–586 (2013).

    Article  CAS  Google Scholar 

  31. Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nature Methods 11, 313–318 (2014).

    Article  CAS  Google Scholar 

  32. Hale, J. E. & Beidler, D. E. Purification of humanized murine and murine monoclonal antibodies using immobilized metal-affinity chromatography. Anal. Biochem. 222, 29–33 (1994).

    Article  CAS  Google Scholar 

  33. Irving, H. & Williams, R. J. P. The stability of transition-metal complexes. J. Chem. Soc. 3192–3210 (1953).

  34. Gatter, K. C., Brown, G., Trowbridge, I. S., Woolston, R. E. & Mason, D. Y. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J. Clin. Pathol. 36, 539–545 (1983).

    Article  CAS  Google Scholar 

  35. Qian, Z. M., Li, H., Sun, H. & Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54, 561–587 (2002).

    Article  CAS  Google Scholar 

  36. Cvetkovic, A. et al. Microbial metalloproteomes are largely uncharacterized. Nature 466, 779–782 (2010).

    Article  CAS  Google Scholar 

  37. Sliwkowski, M. X. & Mellman, I. Antibody therapeutics in cancer. Science 341, 1192–1198 (2013).

    Article  CAS  Google Scholar 

  38. Mullard, A. Maturing antibody–drug conjugate pipeline hits 30. Nature Rev. Drug. Discov. 12, 329–332 (2013).

    Article  CAS  Google Scholar 

  39. Kim, C. H. et al. Bispecific small molecule–antibody conjugate targeting prostate cancer. Proc. Natl Acad. Sci. USA 110, 17796–17801 (2013).

    Article  CAS  Google Scholar 

  40. Kularatne, S. A. et al. Recruiting cytotoxic T cells to folate-receptor-positive cancer cells. Angew. Chem. Int. Ed. 52, 12101–12104 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported financially by the Danish National Research Foundation (grant number DNRF81) and Aarhus University, Faculty of Science and Technology. The authors are grateful to J. B. Knudsen for assistance in the making of the manuscript figures. The authors thank K. Stødkilde-Jørgensen for providing His6-tagged endoglycosidase H protein.

Author information

Authors and Affiliations

Authors

Contributions

C.B.R. and A.L.B.K. contributed equally to this work. C.B.R., A.L.B.K., T.T. and K.V.G. planned the research and wrote the paper. C.B.R, A.L.B.K. and T.T. developed the method, performed experiments and analysed the data. J.S.N. performed the Tf-receptor binding studies and assisted in the gel blotting. D.H.S. and A.H.O. conducted the cell studies. A.H.O. assisted in the enzymatic assay experiments. C.S. performed the MS/MS experiments. T.T., N.V.V. and K.V.G. conceived the study. J.J.E., J.K. and K.V.G. supervised the project. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Thomas Tørring or Kurt V. Gothelf.

Ethics declarations

Competing interests

C.B.R., A.L.B.K., T.T. and K.V.G. have filed a provisional patent application regarding the current work. The other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 29940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosen, C., Kodal, A., Nielsen, J. et al. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins. Nature Chem 6, 804–809 (2014). https://doi.org/10.1038/nchem.2003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing