Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly

Abstract

The activated form of Ran (Ran-GTP) stimulates spindle assembly in Xenopus laevis egg extracts, presumably by releasing spindle assembly factors, such as TPX2 (target protein for Xenopus kinesin-like protein 2) and NuMA (nuclear-mitotic apparatus protein) from the inhibitory binding of importin-α and -β. We report here that Ran-GTP stimulates the interaction between TPX2 and the Xenopus Aurora A kinase, Eg2. This interaction causes TPX2 to stimulate both the phosphorylation and the kinase activity of Eg2 in a microtubule-dependent manner. We show that TPX2 and microtubules promote phosphorylation of Eg2 by preventing phosphatase I (PPI)-induced dephosphorylation. Activation of Eg2 by TPX2 and microtubules is inhibited by importin-α and -β, although this inhibition is overcome by Ran-GTP both in the egg extracts and in vitro with purified proteins. As the phosphorylation of Eg2 stimulated by the Ran-GTP–TPX2 pathway is essential for spindle assembly, we hypothesize that the Ran-GTP gradient established by the condensed chromosomes is translated into the Aurora A kinase gradient on the microtubules to regulate spindle assembly and dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ran-GTP stimulates the interaction between TPX2 and Eg2.
Figure 2: TPX2 and microtubules stimulate phosphorylation of Eg2.
Figure 3: TPX2-induced Eg2 phosphorylation is regulated by the Ran pathway.
Figure 4: Phosphorylation of Eg2 is essential for spindle assembly.
Figure 5: A pathway for Ran-stimulated assembly.

Similar content being viewed by others

References

  1. Nigg, E. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol. 2, 21–31 (2001).

    Article  CAS  Google Scholar 

  2. Andersen, S. Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view. BioEssay 21, 53–60 (1999).

    Article  CAS  Google Scholar 

  3. Giet, R. & Prigent, C. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J. Cell Sci. 112, 3591–3601 (1999).

    CAS  PubMed  Google Scholar 

  4. Glover, D., Leibowitz, M.H., McLean, D.A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Schumacher, J.M., Ashcroft, N., Donovan, P.J. & Golden, A. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development 125, 4391–4402 (1998).

    CAS  PubMed  Google Scholar 

  6. Hannak, E., Kirkham, M., Hyman, A.A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roghi, C.R. et al. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J. Cell Sci. 111, 557–572 (1998).

    CAS  PubMed  Google Scholar 

  8. Giet, R. & Prigent, C. The Xenopus laevis aurora/Ipl1p-related kinase pEg2 participates in the stability of the bipolar mitotic spindle. Exp. Cell Res. 258, 145–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Walter, A.O., Seghezzi, W., Korver, W., Sheung, J. & Lees, E. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 19, 4906–4916 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Geit, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol. 156, 437–451 (2002).

    Article  Google Scholar 

  11. Katayama, H., Zhou, H., Li, Q., Tatsuka, M. & Sen, S. Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J. Biol. Chem. 276, 46219–46224 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Francisco, L., Wang, W. & Chan, C.S. Type 1 protein phosphatases acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol. Cell. Biol. 14, 4731–4740 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andresson, T. & Ruderman, J.V. The kinase Eg2 is a component of the Xenopus oocyte pregesterone-activated signaling pathway. EMBO J. 17, 5627–5637 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sassoon, I. et al. Regulation of Saccharomyces cerevisiae kinetochore by the type 1 phosphatase Glc7p. Genes Dev. 13, 545–555 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsu, J. et al. Mitotic phosphorylation of histone H3 is gorverned by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and Nematodes. Cell 102, 279–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev. 13, 532–544 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Ohba, T., Nakamura, M., Nishitani, H. & Nishimoto, T. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356–1358 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Kalab, P., Pu, R.T. & Dasso, M. The ran GTPase regulates mitotic spindle assembly. Curr Biol 9, 481–484 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Carazo-Salas, R.E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Guarguaglini, G. et al. Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo. Cell Growth Differ. 11, 455–465 (2000).

    CAS  PubMed  Google Scholar 

  22. Moore, W.J., Zhang, C. & Clarke, P.R. Targeting of RCC1 to chromosomes is required for proper mitotic spindle assembly in human cells. Curr. Biol. 12, 1442–1447 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Wilde, A. et al. Ran stimulates spindle assembly by changing microtubule dynamics and the balance of motor activities. Nature Cell Biol. 3, 221–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Carazo-Salas, R.E., Gruss, O.J., Mattaj, I.W. & Karsenti, E. RanGTP coordinates the regulation of microtubule nucleation and dynamics during mitotic spindle assembly. Nature Cell Biol. 3, 228–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Merdes, A., Heald, R., Samejima, K., Earnshaw, W. & Cleveland, D. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. 149, 851–862 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Merdes, A., Ramyar, K., Vechio, J. & Cleveland, D. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Gaglio, T., Saredi, A. & Compton, D. NuMA is required for the organization of microtubules into aster-like mitotic arrays. J. Cell Biol. 131, 693–708 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Gruss, O.J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Wiese, C. et al. Role of Importin-β in coupling Ran to downstream targets in microtubule assembly. Science 291, 653–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Nachury, V.M. et al. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Murray, A.W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Kufer, T.A. et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol. 158, 625–637 (2002).

    Article  Google Scholar 

  35. Giet, R., Uzbekov, N., cubizolles, F., Le Guellec, K. & Prigent, C. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J. Biol. Chem. 274, 15005–15013 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Gruss, O.J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nature Cell Biol. 4, 871–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet. 20, 183–193 (1998).

    Article  Google Scholar 

  38. Sen, S., Zhou, H. & White, R.A. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 14, 2195–2200 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Bischoff, J. & Plowman, G.D. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol. 9, 454–459 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Lizarraga for help with egg extracts, M. Inskeep for technical support, D. Golick for His-tagged RanQ69L, E. Lees for the anti-Eg2 antibody, M. Guo and the members of the Zheng lab for comments. Supported by the Howard Hughes Medical Institute (Y.Z.), by CNRS, ARC, and LNCC of France (C.P.) and by National Institutes of Health grant HD23696 (J.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixian Zheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, MY., Wiese, C., Cao, K. et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5, 242–248 (2003). https://doi.org/10.1038/ncb936

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb936

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing