Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Nuclear exclusion of Smad2 is a mechanism leading to loss of competence

Abstract

Controlling the duration of a signalling process in development by loss of competence is important because too strong an induction can change cell fate. To understand some of the mechanisms that underlie loss of competence, we have analysed the transduction of transforming growth factor-β (TGF-β) signalling during mesoderm formation, which is thought to be induced by TGF-β-like signalling1,2, in embryos of the frog Xenopus laevis. Here we show that gastrula ectoderm has the ability to express mesodermal marker genes in response to the TGF-β signalling molecule activin for many hours, but then loses this ability within 1 h for all mesodermal genes tested. This loss of mesodermal competence correlates with the inability of Smad2, the principal intracellular signal transducer of activin, to accumulate in the nucleus. Mutating three phosphorylation sites within Smad2 abrogates the temporal restriction of Smad2 to accumulate in the nucleus. Overexpression of this mutant form of Smad2 can prolong the competence of endogenous mesodermal genes to respond to activin signalling. Thus, restricting the subcellular localization of an intracellular signal transducer constitutes a mechanism that leads to loss of mesodermal competence. This mechanism operates within less than an hour, and is therefore well suited to control an orderly sequence of inductions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mesodermal competence is lost simultaneously for all genes shown.
Figure 2: Inability of Smad2 to accumulate in the nucleus correlates with loss of mesodermal competence.
Figure 3: Prolonged ability of a mutant form of Smad2 to accumulate in the nucleus.
Figure 4: Overexpression of mutant Smad2 can prolong mesodermal competence.

Similar content being viewed by others

References

  1. Schier, A. F. & Shen, M. M. Nature 403, 385–389 (2000).

    Article  CAS  Google Scholar 

  2. Whitman, M. Genes Dev. 12, 2445–2462 (1998).

    Article  CAS  Google Scholar 

  3. Heldin, C. H., Miyazono, K. & ten Dijke, P. Nature 390, 465–471 (1997).

    Article  CAS  Google Scholar 

  4. Massague, J., Blain, S. W. & Lo, R. S. Cell 103, 295–309 (2000).

    Article  CAS  Google Scholar 

  5. Woodland, H. R. & Jones, E. A. Development 101, 925–930 (1987).

    CAS  PubMed  Google Scholar 

  6. Green, J. B. A. & Smith, J. C. Nature 347, 391–394 (1990).

    Article  CAS  Google Scholar 

  7. Gurdon, J. B., Fairman, S., Mohun, T. J. & Brennan, S. Cell 41, 913–922 (1985).

    Article  CAS  Google Scholar 

  8. Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D. & Herrmann, B. G. Cell 67, 79–87 (1991).

    Article  CAS  Google Scholar 

  9. Cho, K. W., Blumberg, B., Steinbeisser, H. & De Robertis, E. M. Cell 67, 1111–1120 (1991).

    Article  CAS  Google Scholar 

  10. Ryan, K., Garrett, N., Mitchell, A. & Gurdon, J. B. Cell 87, 989–1000 (1996).

    Article  CAS  Google Scholar 

  11. Sasai, Y. et al. Cell 79, 779–790 (1994).

    Article  CAS  Google Scholar 

  12. Lustig, K. D. et al. Development 122, 3275–3282 (1996).

    CAS  PubMed  Google Scholar 

  13. Kretzschmar, M., Doody, J. & Massague, J. Nature 389, 618–622 (1997).

    Article  CAS  Google Scholar 

  14. Kretzschmar, M., Doody, J., Timokhina, I. & Massague, J. Genes Dev. 13, 804–816 (1999).

    Article  CAS  Google Scholar 

  15. Smith, W. C. & Harland, R. M. Cell 70, 829–840 (1992).

    Article  CAS  Google Scholar 

  16. Schohl, A. & Fagotto, F. Development 129, 37–52 (2002).

    CAS  PubMed  Google Scholar 

  17. Coffman, C. R., Skoglund, P., Harris, W. A. & Kintner, C. R. Cell 73, 659–671 (1993).

    Article  CAS  Google Scholar 

  18. Steinbach, O. C., Wolffe, A. P. & Rupp, R. A. Nature 389, 395–399 (1997).

    Article  CAS  Google Scholar 

  19. Henig, C., Elias, S. & Frank, D. Mech. Dev. 71, 131–142 (1998).

    Article  CAS  Google Scholar 

  20. Chen, X., Rubock, M. J. & Whitman, M. Nature 383, 691–696 (1996).

    Article  CAS  Google Scholar 

  21. Ryan, A. K. et al. Nature 394, 545–55. (1998).

    Article  CAS  Google Scholar 

  22. Wilson, P. A. & Melton, D. A. Curr. Biol. 4, 676–686 (1994).

    Article  CAS  Google Scholar 

  23. Danilchick, M., Peng, H. B. & Kay, B. K. Methods Cell Biol. 36, 679–681 (1991).

    Article  CAS  Google Scholar 

  24. Shimizu, K. & Gurdon, J. B. Proc. Natl Acad. Sci. USA 96, 6791–6796 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Martinez-Arias and A. M. Zorn for comments on the manuscript, and P.-Y. Bourillot for the pT7–GFP–Smad2 construct. O.H.G. is supported by the Boehringer Ingelheim Fonds Research in the lab is funded by the Cancer Research UK and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Gurdon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, O., Gurdon, J. Nuclear exclusion of Smad2 is a mechanism leading to loss of competence. Nat Cell Biol 4, 519–522 (2002). https://doi.org/10.1038/ncb812

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing