Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ubiquitylation-dependent localization of PLK1 in mitosis

This article has been updated

Abstract

Polo-like kinase 1 (PLK1) critically regulates mitosis through its dynamic localization to kinetochores, centrosomes and the midzone. The polo-box domain (PBD) and activity of PLK1 mediate its recruitment to mitotic structures, but the mechanisms regulating PLK1 dynamics remain poorly understood. Here, we identify PLK1 as a target of the cullin 3 (CUL3)-based E3 ubiquitin ligase, containing the BTB adaptor KLHL22, which regulates chromosome alignment and PLK1 kinetochore localization but not PLK1 stability. In the absence of KLHL22, PLK1 accumulates on kinetochores, resulting in activation of the spindle assembly checkpoint (SAC). CUL3–KLHL22 ubiquitylates Lys 492, located within the PBD, leading to PLK1 dissociation from kinetochore phosphoreceptors. Expression of a non-ubiquitylatable PLK1-K492R mutant phenocopies inactivation of CUL3–KLHL22. KLHL22 associates with the mitotic spindle and its interaction with PLK1 increases on chromosome bi-orientation. Our data suggest that CUL3–KLHL22-mediated ubiquitylation signals degradation-independent removal of PLK1 from kinetochores and SAC satisfaction, which are required for faithful mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The BTB adaptor protein KLHL22 regulates SAC-dependent chromosome alignment during mitosis.
Figure 2: The CUL3–KLHL22 E3 ligase interacts directly with PLK1 and regulates its kinetochore localization during mitosis.
Figure 3: KLHL22 regulates PLK1-mediated phosphorylation of BUBR1 and stable kinetochore–microtubule attachments.
Figure 4: CUL3–KLHL22-mediated ubiquitylation of PLK1 within the PBD domain regulates faithful chromosome alignment during mitosis.
Figure 5: Ubiquitylation of PLK1 by CUL3–KLHL22 regulates PBD-mediated phospho-interactions at kinetochores and stable kinetochore–microtubule attachments.
Figure 6: KLHL22 accumulates at the mitotic spindle and its association with PLK1 peaks with chromosome bi-orientation.

Similar content being viewed by others

Change history

  • 12 March 2013

    In the version of this Article that was originally published, the acknowledgement to S. Elowe was omitted in error.

References

  1. Williams, B. R. & Amon, A. Aneuploidy: cancer’s fatal flaw? Cancer Res. 69, 5289–5291 (2009).

    Article  CAS  Google Scholar 

  2. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  Google Scholar 

  3. Strebhardt, K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat. Rev. Drug Discov. 9, 643–660 (2010).

    Article  CAS  Google Scholar 

  4. Petronczki, M., Lenart, P. & Peters, J. M. Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646–659 (2008).

    Article  CAS  Google Scholar 

  5. Sumara, I. et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol. 14, 1712–1722 (2004).

    Article  CAS  Google Scholar 

  6. Lenart, P. et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315 (2007).

    Article  CAS  Google Scholar 

  7. Elowe, S., Hummer, S., Uldschmid, A., Li, X. & Nigg, E. A. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 21, 2205–2219 (2007).

    Article  CAS  Google Scholar 

  8. Maia, A. R. et al. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore–microtubule attachments. J. Cell Biol. 199, 285–301 (2012).

    Article  CAS  Google Scholar 

  9. Liu, D., Davydenko, O. & Lampson, M. A. Polo-like kinase-1 regulates kinetochore–microtubule dynamics and spindle checkpoint silencing. J. Cell Biol. 198, 491–499 (2012).

    Article  CAS  Google Scholar 

  10. Lee, K. S. et al. Mechanisms of mammalian polo-like kinase 1 (Plk1) localization: self- versus non-self-priming. Cell Cycle 7, 141–145 (2008).

    Article  CAS  Google Scholar 

  11. Elia, A. E. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83–95 (2003).

    Article  CAS  Google Scholar 

  12. Cheng, K. Y., Lowe, E. D., Sinclair, J., Nigg, E. A. & Johnson, L. N. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J. 22, 5757–5768 (2003).

    Article  CAS  Google Scholar 

  13. Hanisch, A., Wehner, A., Nigg, E. A. & Sillje, H. H. Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol. Biol. Cell 17, 448–459 (2006).

    Article  CAS  Google Scholar 

  14. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2, 21–32 (2001).

    Article  CAS  Google Scholar 

  15. Mateo, F., Vidal-Laliena, M., Pujol, M. J. & Bachs, O. Acetylation of cyclin A: a new cell cycle regulatory mechanism. Biochem. Soc. Trans. 38, 83–86 (2010).

    Article  CAS  Google Scholar 

  16. Hershko, A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ. 12, 1191–1197 (2005).

    Article  CAS  Google Scholar 

  17. Li, W. & Ye, Y. Polyubiquitin chains: functions, structures, and mechanisms. Cell. Mol. Life Sci. 65, 2397–2406 (2008).

    Article  CAS  Google Scholar 

  18. Deshaies, R. J. SCF and cullin/ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    Article  CAS  Google Scholar 

  19. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  20. Sumara, I., Maerki, S. & Peter, M. E3 ubiquitin ligases and mitosis: embracing the complexity. Trends Cell Biol. 18, 84–94 (2008).

    Article  CAS  Google Scholar 

  21. Sumara, I. et al. A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. Dev. Cell 12, 887–900 (2007).

    Article  CAS  Google Scholar 

  22. Maerki, S. et al. The Cul3-KLHL21 E3 ubiquitin ligase targets aurora B to midzone microtubules in anaphase and is required for cytokinesis. J. Cell Biol. 187, 791–800 (2009).

    Article  CAS  Google Scholar 

  23. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246–248 (1996).

    Article  CAS  Google Scholar 

  24. Sumara, I. & Peter, M. A Cul3-based E3 ligase regulates mitosis and is required to maintain the spindle assembly checkpoint in human cells. Cell Cycle 6, 3004–3010 (2007).

    Article  CAS  Google Scholar 

  25. Matsumura, S., Toyoshima, F. & Nishida, E. Polo-like kinase 1 facilitates chromosome alignment during prometaphase through BubR1. J. Biol. Chem. 282, 15217–15227 (2007).

    Article  CAS  Google Scholar 

  26. Joseph, J., Liu, S. T., Jablonski, S. A., Yen, T. J. & Dasso, M. The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr. Biol. 14, 611–617 (2004).

    Article  CAS  Google Scholar 

  27. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  Google Scholar 

  28. Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteomics 10, 013284 (2011).

    Article  Google Scholar 

  29. Park, J. E. et al. Polo-box domain: a versatile mediator of polo-like kinase function. Cell Mol. Life Sci. 67, 1957–1970 (2010).

    Article  CAS  Google Scholar 

  30. Moghe, S. et al. The CUL3-KLHL18 ligase regulates mitotic entry and ubiquitylates Aurora-A. Biol. Open 1, 82–91 (2012).

    Article  CAS  Google Scholar 

  31. Pintard, L., Willems, A. & Peter, M. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J. 23, 1681–1687 (2004).

    Article  CAS  Google Scholar 

  32. Villeneuve, N. F., Lau, A. & Zhang, D. D. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid. Redox. Signal 13, 1699–1712 (2010).

    Article  CAS  Google Scholar 

  33. Huotari, J. et al. Cullin-3 regulates late endosome maturation. Proc. Natl Acad. Sci. USA 109, 823–828 (2012).

    Article  CAS  Google Scholar 

  34. Boyden, L. M. et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482, 98–102 (2012).

    Article  CAS  Google Scholar 

  35. Yuan, W. C. et al. A Cullin3-KLHL20 Ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer Cell 20, 214–228 (2011).

    Article  CAS  Google Scholar 

  36. Hernandez-Munoz, I. et al. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc. Natl Acad. Sci. USA 102, 7635–7640 (2005).

    Article  CAS  Google Scholar 

  37. Jin, L. et al. Ubiquitin-dependent regulation of COPII coat size and function. Nature 482, 495–500 (2012).

    Article  CAS  Google Scholar 

  38. Howell, B. J. et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159–1172 (2001).

    Article  CAS  Google Scholar 

  39. Varma, D., Monzo, P., Stehman, S. A. & Vallee, R. B. Direct role of dynein motor in stable kinetochore–microtubule attachment, orientation, and alignment. J. Cell Biol. 182, 1045–1054 (2008).

    Article  CAS  Google Scholar 

  40. Yang, Z., Tulu, U. S., Wadsworth, P. & Rieder, C. L. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 17, 973–980 (2007).

    Article  CAS  Google Scholar 

  41. Bennett, E. J., Rush, J., Gygi, S. P. & Harper, J. W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143, 951–965 (2010).

    Article  CAS  Google Scholar 

  42. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  43. Yun, S. M. et al. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat. Struct. Mol. Biol. 16, 876–882 (2009).

    Article  CAS  Google Scholar 

  44. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    Article  Google Scholar 

  45. Belov, G. A. et al. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J. Virol. 78, 10166–10177 (2004).

    Article  CAS  Google Scholar 

  46. Pedrioli, P. G. et al. A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 22, 1459–1466 (2004).

    Article  CAS  Google Scholar 

  47. MacLean, B., Eng, J. K., Beavis, R. C. & McIntosh, M. General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 22, 2830–2832 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Piwko, T. Courtheoux, P. Meraldi, D. Gerlich, A. Smith, O. Pourquié and M. Labouesse for helpful discussions and editing of the manuscript, E. A. Nigg, S. Elowe, J-M. Peters, P. Meraldi, U. Kutay and F. Barr for antibodies, D. Gerlich and U. Kutay for cell lines and G. Csucs, J. Kusch, O. Biehlmeier and T. Schwarz from the D-BIOL Light Microscopy Center for help with microscopy. J.B. was granted an EMBO Short Term Fellowship, and S.M. was funded by ETHZ and the Boehringer Ingelheim Fonds. I.S. was supported by the ETHZ and the Swiss National Science Foundation (SNF), and research in D.R. and M.P.’s laboratories by the Canadian Institute of Health Research (CIHR), the European Research Council (ERC), the SNF and the ETHZ, respectively. Research in I.S.’s laboratory is supported by the IGBMC, the ATIP-AVENIR program, CNRS, INSERM and Sanofi-Aventis.

Author information

Authors and Affiliations

Authors

Contributions

J.B., S.M. and T.M. conceived ideas, performed experiments, and analysed and interpreted the data. H.S. and K.H. performed bioinformatic analysis of protein microarray data. A.P. and D.R. collaborated on protein microarray experiments. P.P. conducted the MS analysis of PLK1 ubiquitylation sites. M. Posch and J.R.S. collaborated on live-cell video microscopy techniques. M. Peter and I.S. conceived ideas. J.B., M. Peter and I.S. wrote the manuscript.

Corresponding authors

Correspondence to Matthias Peter or Izabela Sumara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2083 kb)

Supplementary Table 1

Supplementary Information (XLSX 15 kb)

Supplementary Table 2

Supplementary Information (XLSX 15 kb)

GFP–KLHL22 spindle and centrosome localization 1.

Live video microscopy of cells expressing GFP–KLHL22, showing localization of GFP–KLHL22 during mitosis. Movies were generated from maximum intensity projections through Z-stacks spanning a total depth of 15 μm at 1 μm increments. Projected images were normalized to 0.5% saturated pixels per frame to balance visual effects of photobleaching. Time resolution is 30 s per frame. (AVI 303 kb)

GFP–KLHL22 spindle and centrosome localization 2

Live video microscopy of cells expressing GFP–KLHL22, showing localization of GFP–KLHL22 during mitosis. Movies were generated from maximum intensity projections through Z-stacks spanning a total depth of 15 μm at 1 μm increments. Projected images were normalized to 0.5% saturated pixels per frame to balance visual effects of photobleaching. Time resolution is 30 s per frame. (AVI 667 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, J., Maerki, S., Posch, M. et al. Ubiquitylation-dependent localization of PLK1 in mitosis. Nat Cell Biol 15, 430–439 (2013). https://doi.org/10.1038/ncb2695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing