Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spindle-localized CPE-mediated translation controls meiotic chromosome segregation

Abstract

Meiotic progression requires the translational activation of stored maternal mRNAs, such as those encoding cyclin B1 or mos. The translation of these mRNAs is regulated by the cytoplasmic polyadenylation element (CPE) present in their 3′UTRs, which recruits the CPE-binding protein CPEB1. This RNA-binding protein not only dictates the timing and extent of translational activation by cytoplasmic polyadenylation2,3 but also participates, together with the translational repressor Maskin, in the transport and localization, in a quiescent state, of its targets to subcellular locations where their translation will take place4. During the early development of Xenopus laevis, CPEB localizes at the animal pole of oocytes and later on at embryonic spindles and centrosomes5. Disruption of embryonic CPEB-mediated translational regulation results in abnormalities in the mitotic apparatus and inhibits embryonic mitosis5. Here we show that spindle-localized translational activation of CPE-regulated mRNAs, encoding for proteins with a known function in spindle assembly and chromosome segregation, is essential for completion of the first meiotic division and for chromosome segregation in Xenopus oocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Xkid and TPX2 mRNAs are cytoplasmically polyadenylated and translationally activated during meiotic maturation.
Figure 2: The 3′UTRs of Xkid and TPX2 mRNAs direct their localization to the spindles.
Figure 3: Localized translational activation of Xkid mRNA is required for the accumulation of Xkid protein.
Figure 4: Localized Xkid mRNA translation is required for MI–MII transition.
Figure 5: Localized translational activation of CPE-containing mRNAs is required for MI–MII transition.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Richter, J. D. CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285 (2007).

    Article  CAS  Google Scholar 

  2. Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307 (2000).

    Article  CAS  Google Scholar 

  3. Mendez, R., Barnard, D. & Richter, J. D. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 21, 1833–1844 (2002).

    Article  CAS  Google Scholar 

  4. Huang, Y. S., Carson, J. H., Barbarese, E. & Richter, J. D. Facilitation of dendritic mRNA transport by CPEB. Genes Dev. 17, 638–53 (2003).

    Article  CAS  Google Scholar 

  5. Groisman, I. et al. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103, 435–447 (2000).

    Article  CAS  Google Scholar 

  6. Barnard, D. C., Cao, Q. & Richter, J. D. Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Mol. Cell Biol. 25, 7605–7615 (2005).

    Article  CAS  Google Scholar 

  7. O'Brien, L. L. et al. The Xenopus TACC homologue, maskin, functions in mitotic spindle assembly. Mol. Biol. Cell 16, 2836–2847 (2005).

    Article  CAS  Google Scholar 

  8. Peset, I. et al. Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis. J. Cell Biol. 170, 1057–1066 (2005).

    Article  CAS  Google Scholar 

  9. Blower, M. D., Nachury, M., Heald, R. & Weis, K. A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 121, 223–234 (2005).

    Article  CAS  Google Scholar 

  10. Lambert, J. D. & Nagy, L. M. Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature 420, 682–686 (2002).

    Article  CAS  Google Scholar 

  11. Alliegro, M. C., Alliegro, M. A. & Palazzo, R. E. Centrosome-associated RNA in surf clam oocytes. Proc. Natl Acad. Sci. USA 103, 9034–9038 (2006).

    Article  CAS  Google Scholar 

  12. Liska, A. J. et al. Homology-based functional proteomics by mass spectrometry: application to the Xenopus microtubule-associated proteome. Proteomics 4, 2707–2721 (2004).

    Article  CAS  Google Scholar 

  13. Blower, M. D., Feric, E., Weis, K. & Heald, R. Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J. Cell Biol. 179, 1365–1373 (2007).

    Article  CAS  Google Scholar 

  14. Pique, M., Lopez, J. M., Foissac, S., Guigo, R. & Mendez, R. A combinatorial code for CPE-mediated translational control. Cell 132, 434–448 (2008).

    Article  CAS  Google Scholar 

  15. Antonio, C. et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425–435 (2000).

    Article  CAS  Google Scholar 

  16. Perez, L. H., Antonio, C., Flament, S., Vernos, I. & Nebreda, A. R. Xkid chromokinesin is required for the meiosis I to meiosis II transition in Xenopus laevis oocytes. Nature Cell Biol. 4, 737–742 (2002).

    Article  CAS  Google Scholar 

  17. Gruss, O. J. & Vernos, I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949–955 (2004).

    Article  CAS  Google Scholar 

  18. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    Article  CAS  Google Scholar 

  19. de Moor, C. H. & Richter, J. D. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J. 18, 2294–2303 (1999).

    Article  CAS  Google Scholar 

  20. Iwabuchi, M., Ohsumi, K., Yamamoto, T. M., Sawada, W. & Kishimoto, T. Residual Cdc2 activity remaining at meiosis I exit is essential for meiotic M–M transition in Xenopus oocyte extracts. EMBO J. 19, 4513–4523 (2000).

    Article  CAS  Google Scholar 

  21. Zhou, B. B., Li, H., Yuan, J. & Kirschner, M. W. Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc. Natl Acad. Sci. USA 95, 6785–6790 (1998).

    Article  CAS  Google Scholar 

  22. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    Article  CAS  Google Scholar 

  23. Charlesworth, A., Ridge, J. A., King, L. A., MacNicol, M. C. & MacNicol, A. M. A novel regulatory element determines the timing of Mos mRNA translation during Xenopus oocyte maturation. EMBO J. 21, 2798–2806 (2002).

    Article  CAS  Google Scholar 

  24. Murray, A. W. in Xenopus laevis: practical uses in cell on molecular biology (eds Kay, B. K. & Peng, H. B.) 581–605 (Academic Press, San Diego, 1991).

    Google Scholar 

  25. Becker, B. E. & Gard, D. L. Visualization of the cytoskeleton in Xenopus oocytes and eggs by confocal immunofluorescence microscopy. Methods Mol. Biol. 322, 69–86 (2006).

    Article  Google Scholar 

  26. Wormington, M. Preparation of synthetic mRNAs and analyses of translational efficiency in microinjected Xenopus oocytes. Methods Cell Biol. 36, 167–183 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Joel D. Richter for the anti-CPEB antibody, Angel Nebreda for Xkid cDNA and antibody, Edouard Bertrand and Robert H. Singer for MS2-binding sites and MS2–GFP cDNAs, Fátima Gebauer for the reporter plasmids pLuccassette and pRenilla and her helpful discussions, CRG-Microscopy Facility for technical advice and Mercedes Fernández, members of the Méndez laboratory, Juan Valcarcel and other colleagues from the Program of Gene Expression for helpful advice and critically reading the manuscript. This work was supported by grants from the MEC, Fundación 'La Caixa' and Fundació 'Marató de TV3'. R.M. is a recipient of a contract from the 'Programa Ramon y Cajal' (MEC). CE is recipient of a fellowship from the DURSI (Generalitat de Catalunya) i dels Fons Social Europeu.

Author information

Authors and Affiliations

Authors

Contributions

I.P. performed the experiments shown in Fig. 2c, d and f; C.E. performed the rest of the experiments; I.V. and R.M. contributed to the experimental design and prepared the manuscript.

Corresponding author

Correspondence to Raúl Méndez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6 (PDF 1376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliscovich, C., Peset, I., Vernos, I. et al. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol 10, 858–865 (2008). https://doi.org/10.1038/ncb1746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing