Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

TRAPPII subunits are required for the specificity switch of a Ypt–Rab GEF

Abstract

Ypt–Rab GTPases are key regulators of the various steps of intracellular trafficking. Guanine nucleotide-exchange factors (GEFs) regulate the conversion of Ypt–Rabs to the GTP-bound state, in which they interact with effectors that mediate all the known aspects of vesicular transport1,2,3. An interesting possibility is that Ypt–Rabs coordinate separate steps of the transport pathways4. The conserved modular complex TRAPP is a GEF for the Golgi gatekeepers Ypt1 and Ypt31/32 (Refs 57). However, it is not known how Golgi entry and exit are coordinated. TRAPP comes in two configurations: the seven-subunit TRAPPI is required for endoplasmic reticulum-to-Golgi transport, whereas the ten-subunit TRAPPII functions in late Golgi8,9,10. The two essential TRAPPII-specific subunits Trs120 and Trs130 have been identified as Ypt31/32 genetic interactors11,12,13. Here, we show that they are required for switching the GEF specificity of TRAPP from Ypt1 to Ypt31. Moreover, a trs130ts mutation confers opposite effects on the intracellular localization of these GTPases. We suggest that the Trs120–Trs130 subcomplex joins TRAPP in the late Golgi to switch its GEF activity from Ypt1 to Ypt31/32. Such a 'switchable' GEF could ensure sequential activation of these Ypts, thereby coordinating Golgi entry and exit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification of GST–Bet5-associated complexes from wild-type (WT) and trs130- and trs120-mutant cells.
Figure 2: TRAPP purified from trs130- and trs120-mutant cells is defective in Ypt31 GEF, but possesses higher Ypt1 GEF activity than wild-type TRAPP.
Figure 3: TRAPPII-specific subunits regulate Ypt1 and Ypt31 in opposite ways in vitro and in vivo.
Figure 4: Physical and genetic interactions between TRAPP subunits and the Golgi Ypts.
Figure 5: Models for the specificity-switch of the dual TRAPP GEF by Trs130.

Similar content being viewed by others

References

  1. Segev, N. Ypt and Rab GTPases: insight into functions through novel interactions. Curr Opin Cell Biol. 13, 500–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  3. Pfeffer, S. R. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 11, 487–491 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Segev, N. Ypt/rab GTPases: regulators of protein trafficking. Sci. STKE 2001, RE11 (2001).

    CAS  PubMed  Google Scholar 

  5. Jones, S., Newman, C., Liu, F. & Segev, N. The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Mol. Biol. Cell 11, 4403–4411 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jedd, G., Richardson, C., Litt, R. & Segev, N. The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway. J. Cell Biol. 131, 583–590 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Jedd, G., Mulholland, J. & Segev, N. Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J. Cell Biol. 137, 563–580 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sacher, M. et al. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J. 17, 2494–2503 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sacher, M., Barrowman, J., Schieltz, D., Yates, J. R., 3rd & Ferro-Novick, S. Identification and characterization of five new subunits of TRAPP. Eur. J. Cell Biol. 79, 71–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Sacher, M. et al. TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol. Cell 7, 433–442 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto, K. & Jigami, Y. Mutation of TRS130, which encodes a component of the TRAPP II complex, activates transcription of OCH1 in Saccharomyces cerevisiae. Curr. Genet. 42, 85–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, C. J. et al. Genetic interactions link ARF1, YPT31/32 and TRS130. Yeast 19, 1075–1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Sciorra, V. A. et al. Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol. Biol. Cell 16, 776–793 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Segev, N., Mulholland, J. & Botstein, D. The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52, 915–924 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, S. H. et al. Ypt31/32 GTPases and their novel F-box effector protein Rcy1 regulate protein recycling. Mol. Biol. Cell 16, 178–192 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Novick, P., Ferro, S. & Schekman, R. Order of events in the yeast secretory pathway. Cell 25, 461–469 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Siniossoglou, S., Peak-Chew, S. Y. & Pelham, H. R. Ric1p and Rgp1p form a complex that catalyses nucleotide exchange on Ypt6p. EMBO J. 19, 4885–4894 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bensen, E. S., Yeung, B. G. & Payne, G. S. Ric1p and the Ypt6p GTPase function in a common pathway required for localization of trans-Golgi network membrane proteins. Mol. Biol. Cell 12, 13–26 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jones, S., Litt, R. J., Richardson, C. J. & Segev, N. Requirement of nucleotide exchange factor for Ypt1 GTPase mediated protein transport. J. Cell Biol. 130, 1051–1061 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, W. & Ferro-Novick, S. A Ypt32p exchange factor is a putative effector of Ypt1p. Mol. Biol. Cell 13, 3336–3343 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Losev, E. et al. Golgi maturation visualized in living yeast. Nature 441, 1007–1010 (2006).

    Article  Google Scholar 

  24. Matsuura-Tokita, K., Takeuchi, M., Ichihara, A., Mikuriya, K. & Nakano, A. Live imaging of yeast Golgi cisternal maturation. Nature 441, 1002–1006 (2006).

    Article  Google Scholar 

  25. Hu, W. H. et al. NIBP, a novel NIK and IKK(beta)-binding protein that enhances NF-(kappa)B activation. J. Biol. Chem. 280, 29233–29241 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Yamakawa, K. et al. Isolation and characterization of a candidate gene for progressive myoclonus epilepsy on 21q22.3. Hum. Mol. Genet. 4, 709–716 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Nagamine, K. et al. Genomic organization and complete nucleotide sequence of the TMEM1 gene on human chromosome 21q22.3. Biochem. Biophys. Res. Commun. 235, 185–190 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Lafreniere, R. G. et al. Genomic structure of the human GT334 (EHOC-1) gene mapping to 21q22.3. Gene 198, 313–321 (1997).

    Article  PubMed  Google Scholar 

  29. Jones, S., Richardson, C. J., Litt, R. J. & Segev, N. Identification of regulators for Ypt1 GTPase nucleotide cycling. Mol. Biol. Cell 9, 2819–2837 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Jones, S. et al. Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers. Genetics 152, 1543–1556 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rose, M., Winston, F. & Heiter, P. in Methods in Yeast Genetics 146–153 (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1988).

    Google Scholar 

  32. Gietz, D., St. Jean, A., Woods, R. & Schiestl, R. Improved method for high efficiency transformation of intact yeast cells. Nucl. Acids Res. 20, 1625 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Stone for critical reading of the manuscript, A. Lodhi for tehcnical help and Y. Jigami for the 2μ Trs130 plasmid. This research was supported by grant GM-45444 from the National Institutes of Health (NIH) to N. Segev.

Author information

Authors and Affiliations

Authors

Contributions

N.M., Y.L. and A.A.T. were responsible for the experimental work. S.H.C., J.A., Z.L., V.A.S. and S.D.E. contributed plasmids and strains. R.C. performed sequence analysis. N.S., with the help of the other authors, was involved in project planning, data analysis and writing.

Corresponding author

Correspondence to Nava Segev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6 and Supplementary Table S1 (PDF 2769 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozova, N., Liang, Y., Tokarev, A. et al. TRAPPII subunits are required for the specificity switch of a Ypt–Rab GEF. Nat Cell Biol 8, 1263–1269 (2006). https://doi.org/10.1038/ncb1489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing