Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-organization of microtubule bundles in anucleate fission yeast cells

Abstract

Self-organization of cellular structures is an emerging principle underlying cellular architecture. Properties of dynamic microtubules and microtubule-binding proteins contribute to the self-assembly of structures such as microtubule asters1,2. In the fission yeast Schizosaccharomyces pombe, longitudinal arrays of cytoplasmic microtubule bundles regulate cell polarity and nuclear positioning3,4,5. These bundles are thought to be organized from the nucleus at multiple interphase microtubule organizing centres (iMTOCs)3. Here, we find that microtubule bundles assemble even in cells that lack a nucleus. These bundles have normal organization, dynamics and orientation, and exhibit anti-parallel overlaps in the middle of the cell. The mechanisms that are responsible for formation of these microtubule bundles include cytoplasmic microtubule nucleation, microtubule release from the equatorial MTOC (eMTOC), and the dynamic fusion and splitting of microtubule bundles. Bundle formation and organization are dependent on mto1p (γ-TUC associated protein), ase1p (PRC1), klp2p (kinesin-14) and tip1p (CLIP-170). Positioning of nuclear fragments and polarity factors by these microtubules illustrates how self-organization of these bundles contributes to establishing global spatial order.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anucleate cells exhibit microtubule (MT) bundles with normal organization and distribution.
Figure 2: Anucleate cells have stable iMTOC-like structures.
Figure 3: Generation of microtubule bundles in anucleate cells.
Figure 4: Movement of a mini-nuclear fragment by a microtubule bundle.

Similar content being viewed by others

References

  1. Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  CAS  Google Scholar 

  2. Dogterom, M., Kerssemakers, J. W., Romet-Lemonne, G. & Janson, M. E. Force generation by dynamic microtubules. Curr. Opin. Cell Biol. 17, 67–74 (2005).

    Article  CAS  Google Scholar 

  3. Tran, P. T., Marsh, L., Doye, V., Inoue, S. & Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–411 (2001).

    Article  CAS  Google Scholar 

  4. Martin, S. G. & Chang, F. New end take off: regulating cell polarity during the fission yeast cell cycle. Cell Cycle 4, 1046–1049 (2005).

    Article  CAS  Google Scholar 

  5. Daga, R. R., Yonetani, A. & Chang, F. Asymmetric microtubule pushing forces in nuclear centering. Curr. Biol. 16, 1544–1550 (2006).

    Article  CAS  Google Scholar 

  6. Daga, R. R. & Chang, F. Dynamic positioning of the fission yeast cell division plane. Proc. Natl Acad. Sci. USA 102, 8228–8232 (2005).

    Article  CAS  Google Scholar 

  7. Hagan, I. & Yanagida, M. Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature 347, 563–566 (1990).

    Article  CAS  Google Scholar 

  8. He, X., Patterson, T. E. & Sazer, S. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 94, 7965–7970 (1997).

    Article  CAS  Google Scholar 

  9. Ding, D. Q., Chikashige, Y., Haraguchi, T. & Hiraoka, Y. Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J. Cell Sci. 111, 701–712 (1998).

    CAS  PubMed  Google Scholar 

  10. West, R. R., Vaisberg, E. V., Ding, R., Nurse, P. & McIntosh, J. R. cut11(+): A gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol. Biol. Cell 9, 2839–2855 (1998).

    Article  CAS  Google Scholar 

  11. Mata, J. & Nurse, P. tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89, 939–949 (1997).

    Article  CAS  Google Scholar 

  12. Loiodice, I. et al. Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. Mol. Biol. Cell 16, 1756–1768 (2005).

    Article  CAS  Google Scholar 

  13. Yamashita, A., Sato, M., Fujita, A., Yamamoto, M. & Toda, T. The roles of fission yeast ase1 in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling. Mol. Biol. Cell 16, 1378–1395 (2005).

    Article  CAS  Google Scholar 

  14. Janson, M. E., Setty, T. G., Paoletti, A. & Tran, P. T. Efficient formation of bipolar microtubule bundles requires microtubule-bound K-tubulin complexes. J. Cell Biol. 169, 297–308 (2005).

    Article  CAS  Google Scholar 

  15. Carazo-Salas, R. E., Antony, C. & Nurse, P. The kinesin Klp2 mediates polarization of interphase microtubules in fission yeast. Science 309, 297–300 (2005).

    Article  CAS  Google Scholar 

  16. Heitz, M. J., Petersen, J., Valovin, S. & Hagan, I. M. MTOC formation during mitotic exit in fission yeast. J. Cell Sci. 114, 4521–4532 (2001).

    CAS  PubMed  Google Scholar 

  17. Zimmerman, S., Tran, P. T., Daga, R. R., Niwa, O. & Chang, F. Rsp1p, a J domain protein required for disassembly and assembly of microtubule organizing centers during the fission yeast cell cycle. Dev. Cell 6, 497–509 (2004).

    Article  CAS  Google Scholar 

  18. Sawin, K. E., Lourenco, P. C. & Snaith, H. A. Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Curr. Biol. 14, 763–775 (2004).

    Article  CAS  Google Scholar 

  19. Brunner, D. & Nurse, P. CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704 (2000).

    Article  CAS  Google Scholar 

  20. Zimmerman, S. & Chang, F. Effects of γ-tubulin complex proteins on microtubule nucleation and catastrophe in fission yeast. Mol. Biol. Cell 16, 2719–2733 (2005).

    Article  CAS  Google Scholar 

  21. Venkatram, S. et al. Identification and characterization of two novel proteins affecting fission yeast K-tubulin complex function. Mol. Biol. Cell 15, 2287–2301 (2004).

    Article  CAS  Google Scholar 

  22. Behrens, R. & Nurse, P. Roles of fission yeast tea1p in the localization of polarity factors and in organizing the microtubular cytoskeleton. J. Cell Biol. 157, 783–793 (2002).

    Article  CAS  Google Scholar 

  23. Feierbach, B., Verde, F. & Chang, F. Regulation of a formin complex by the microtubule plus end protein tea1p. J. Cell Biol. 165, 697–707 (2004).

    Article  CAS  Google Scholar 

  24. Tolic-Norrelykke, I. M., Sacconi, L., Stringari, C., Raabe, I. & Pavone, F. S. Nuclear and division-plane positioning revealed by optical micromanipulation. Curr. Biol. 15, 1212–1216 (2005).

    Article  CAS  Google Scholar 

  25. Sacconi, L., Tolic-Norrelykke, I. M., Stringari, C., Antolini, R. & Pavone, F. S. Optical micromanipulations inside yeast cells. Appl. Opt. 44, 2001–2007 (2005).

    Article  Google Scholar 

  26. Hagan, I. M. & Asycough, K. R. in Protein localisation in fluorescence microscopy (ed. Allen, V. J.) 179–206 (Oxford Press, Oxford, 2000).

    Google Scholar 

Download references

Acknowledgements

We thank P. Tran and R. Carazo-Salas for strains, the Chang lab and I. Zhurinsky for fruitful discussions, J. Jimenez for use of his laboratory and P. Nurse for support of R.D. during a portion of this work. This work was supported by a National Institutes of Health (NIH) grant (GM069670) to F.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daga, R., Lee, KG., Bratman, S. et al. Self-organization of microtubule bundles in anucleate fission yeast cells. Nat Cell Biol 8, 1108–1113 (2006). https://doi.org/10.1038/ncb1480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing