Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions

Abstract

Misfolding and aggregation of proteins containing expanded polyglutamine repeats underlie Huntington's disease and other neurodegenerative disorders1. Here, we show that the hetero-oligomeric chaperonin TRiC (also known as CCT) physically interacts with polyglutamine-expanded variants of huntingtin (Htt) and effectively inhibits their aggregation. Depletion of TRiC enhances polyglutamine aggregation in yeast and mammalian cells. Conversely, overexpression of a single TRiC subunit, CCT1, is sufficient to remodel Htt-aggregate morphology in vivo and in vitro, and reduces Htt-induced toxicity in neuronal cells. Because TRiC acts during de novo protein biogenesis2, this chaperonin may have an early role preventing Htt access to pathogenic conformations. Based on the specificity of the Htt–CCT1 interaction, the CCT1 substrate-binding domain may provide a versatile scaffold for therapeutic inhibitors of neurodegenerative disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired TRiC function increases PolyQ-expanded huntingtin aggregation in budding yeast.
Figure 2: TRiC physically interacts with and directly suppresses aggregation of PolyQ-expanded huntingtin.
Figure 3: Specific TRiC subunits directly modulate PolyQ-expanded huntingtin aggregate morphology.
Figure 4: Impaired TRiC function increases PolyQ-expanded huntingtin aggregation in mammalian cells.
Figure 5: TRiC modulates aggregation of PolyQ-expanded huntingtin and alleviates cytotoxicity in neurons.

Similar content being viewed by others

References

  1. Zoghbi, H. Y. & Orr, H. T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  Google Scholar 

  2. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F. U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117 (1994).

    Article  CAS  Google Scholar 

  3. Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Rev. Neurosci. 4, 49–60 (2003).

    Article  CAS  Google Scholar 

  4. Muchowski, P. J. & Wacker, J. L. Modulation of neurodegeneration by molecular chaperones. Nature Rev. Neurosci. 6, 11–22 (2005).

    Article  CAS  Google Scholar 

  5. Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl Acad. Sci. USA 96, 4604–4609 (1999).

    Article  CAS  Google Scholar 

  6. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001).

    Article  CAS  Google Scholar 

  7. Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  8. Nollen, E. A. et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl Acad. Sci. USA 101, 6403–6408 (2004).

    Article  CAS  Google Scholar 

  9. Spiess, C., Meyer, A. S., Reissmann, S. & Frydman, J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 14, 598–604 (2004).

    Article  CAS  Google Scholar 

  10. Melville, M. W., McClellan, A. J., Meyer, A. S., Darveau, A. & Frydman, J. The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel-Lindau tumor suppressor complex. Mol. Cell Biol. 23, 3141–3151 (2003).

    Article  CAS  Google Scholar 

  11. Krobitsch, S. & Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl Acad. Sci. USA 97, 1589–1594 (2000).

    Article  CAS  Google Scholar 

  12. Vinh, D. B. & Drubin, D. G. A yeast TCP-1-like protein is required for actin function in vivo. Proc. Natl Acad. Sci. USA 91, 9116–9120 (1994).

    Article  CAS  Google Scholar 

  13. Camasses, A., Bogdanova, A., Shevchenko, A. & Zachariae, W. The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Mol. Cell 12, 87–100 (2003).

    Article  CAS  Google Scholar 

  14. Deutschbauer, A. M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    Article  CAS  Google Scholar 

  15. Muchowski, P. J. et al. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl Acad. Sci. USA 97, 7841–7846 (2000).

    Article  CAS  Google Scholar 

  16. Muchowski, P. J., Ning, K., D' Souza-Schorey, C. & Fields, S. Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc. Natl Acad. Sci. USA 99, 727–732 (2002).

    Article  CAS  Google Scholar 

  17. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  Google Scholar 

  18. Jana, N. R., Tanaka, M., Wang, G. & Nukina, N. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet. 9, 2009–2018 (2000).

    Article  CAS  Google Scholar 

  19. Albanese, V., Yam, A. Y., Baughman, J., Parnot, C. & Frydman, J. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124, 75–88 (2006).

    Article  CAS  Google Scholar 

  20. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  Google Scholar 

  21. Poirier, M. A. et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277, 41032–41037 (2002).

    Article  CAS  Google Scholar 

  22. Wacker, J. L., Zareie, M. H., Fong, H., Sarikaya, M. & Muchowski, P. J. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nature Struct. Mol. Biol. 11, 1215–1222 (2004).

    Article  CAS  Google Scholar 

  23. Marx, J. Neurodegeneration. Huntington's research points to possible new therapies. Science 310, 43–45 (2005).

    Article  CAS  Google Scholar 

  24. Adams, A., Gottschling, D. E., Daiser, C. A. & Stearns, T. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, New York, 1997).

    Google Scholar 

  25. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article  CAS  Google Scholar 

  26. Bennett, E. J., Bence, N. F., Jayakumar, R. & Kopito, R. R. Global impairment of the ubiquitin–proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 17, 351–365 (2005).

    Article  CAS  Google Scholar 

  27. Kabir, M. A. et al. Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae. Yeast 22, 219–239 (2005).

    Article  CAS  Google Scholar 

  28. McClellan, A. J., Scott, M. D. & Frydman, J. Folding and quality control of the VHL tumor suppressor proceed through distinct chaperone pathways. Cell 121, 739–748 (2005).

    Article  CAS  Google Scholar 

  29. Parran, D. K., Barker, A. & Ehrich, M. Effects of thimerosal on NGF signal transduction and cell death in neuroblastoma cells. Toxicol. Sci. 86, 132–140 (2005).

    Article  CAS  Google Scholar 

  30. Ferreyra, R. G. & Frydman, J. Purification of the cytosolic chaperonin TRiC from bovine testis. Methods Mol. Biol. 140, 153–160 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Zachariae, R. Kopito, R. Davis, N. Nukina and F. Sherman for kindly providing reagents and cells, P. Ren, V. Albanese, B. Riley, A.J. McClellan and other members of the Frydman and Kopito labs for advice and stimulating discussions and R. Andino for useful discussions and comments on the manuscript. This work was supported by National Institutes of Health (NIH) grants GM56433 and GM74074.

Author information

Authors and Affiliations

Authors

Contributions

S.T. and J.F. planned the project. S.T., R.G. and C.S. prepared reagents and performed experiments. S.T., R.G., C.S. and J.F. designed experiments, interpreted data and wrote the manuscript.

Corresponding author

Correspondence to Judith Frydman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and Supplementary table S1. (PDF 312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, S., Geller, R., Spiess, C. et al. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8, 1155–1162 (2006). https://doi.org/10.1038/ncb1477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1477

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing