Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extension movements in Xenopus embryos

Abstract

Early shaping of Xenopus laevis embryos occurs through convergent and extension movements, a process that is driven by intercalation of polarized dorsal mesodermal cells and regulated by non-canonical Wnt signalling1,2,3. Here, we have identified Xenopus syndecan-4 (xSyn4), a cell-surface transmembrane heparan sulphate proteoglycan. At the gastrula stage, xSyn4 is expressed in the involuting dorsal mesoderm and the anterior neuroectoderm. Later, it is found in the pronephros, branchial arches, brain and tailbud. Both gain- and loss-of-function of xSyn4 impaired convergent extension movements in Xenopus embryos and in activin-treated ectodermal explants. xSyn4 interacts functionally and biochemically with the Wnt receptor Frizzled7 (xFz7) and its signal transducer Dishevelled (xDsh). Furthermore, xSyn4 is necessary and sufficient for translocation of xDsh to the plasma membrane — a landmark in the activation of non-canonical Wnt signalling1,2,3. Our results suggest that the ability of xSyn4 to translocate xDsh is regulated by fibronectin, a component of the extracellular matrix required for proper convergent extension movements4,5,6. We propose a model where xSyn4 and fibronectin cooperate with xFz7 and Wnt in the specific activation of the non-canonical Wnt pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and expression of xSyn4.
Figure 2: xSyn4 gain-of-function disrupts convergent and extension movements.
Figure 3: xSyn4 is essential for convergence and extension movements.
Figure 4: Functional and biochemical interaction of xSyn4 with xFz7 and xDsh.
Figure 5: xSyn4 interacts with xDsh in a fibronectin-dependent manner.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Keller, R. Shaping the vertebrate body plan by polarized cell movements. Science 298, 1950–1954 (2002).

    Article  CAS  Google Scholar 

  2. Solnica-Krezel, L. Conserved patterns of cell movements during vertebrate gastrulation. Curr. Biol. 15, R213–R228 (2005).

    Article  CAS  Google Scholar 

  3. Wallingford, J. B., Fraser S. E. & Harland, R. M. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell 2, 695–706 (2002).

    Article  CAS  Google Scholar 

  4. Marsden, M. & DeSimone, D. Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development 128, 3635–3647 (2001).

    CAS  PubMed  Google Scholar 

  5. Marsden, M. & DeSimone, D. Integrin–ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr. Biol. 13, 1182–1191 (2003).

    Article  CAS  Google Scholar 

  6. Goto, T., Davidson, L., Asashima, M. & Keller, R. Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr. Biol. 15, 787–793 (2005).

    Article  CAS  Google Scholar 

  7. Woods, A. & Couchman, J. R. Syndecan-4 and focal adhesion function. Curr. Opin. Cell Biol. 13, 578–583 (2001).

    Article  CAS  Google Scholar 

  8. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77 (1997).

    Article  CAS  Google Scholar 

  9. Djiane, A., Riou, J., Umbhauer, M., Boucaut, J. & Shi, D. Role of frizzled-7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 127, 3091–3100 (2000).

    CAS  PubMed  Google Scholar 

  10. Tada, M. & Smith, J. C. Xwnt11 is a target of Xenopus brachyury: regulation of gastrulation movements via dishevelled but not through the canonical Wnt pathway. Development 127, 2227–2238 (2000).

    CAS  PubMed  Google Scholar 

  11. Wallingford, J. B. & Harland, R. M. Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis. Development 128, 2581–2592 (2001).

    CAS  PubMed  Google Scholar 

  12. Park, M. & Moon, R. T. The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nature Cell Biol. 4, 20–25 (2002).

    Article  CAS  Google Scholar 

  13. Goto, T. & Keller, R. The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev. Biol. 247, 165–181 (2002).

    Article  CAS  Google Scholar 

  14. Wallingford, J. B., et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  Google Scholar 

  15. Winklbauer, R., Medina. A., Swain. R. K. & Steinbeisser, H. Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413, 856–860 (2001).

    Article  CAS  Google Scholar 

  16. Medina, A., Reintsch, W. & Steinbeisser, H. Xenopus frizzled 7 can act in canonical and non-canonical Wnt signaling pathways: implications on early patterning and morphogenesis. Mech. Dev. 92, 227–237 (2000).

    Article  CAS  Google Scholar 

  17. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  Google Scholar 

  18. Rothbacher, U. et al. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J. 19, 1010–1022 (2000).

    Article  CAS  Google Scholar 

  19. Yang-Snyder, J., Miller, J. R., Brown, J. D., Lai, C. J. & Moon, R. T. A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr. Biol. 6, 1302–1306 (1996).

    Article  CAS  Google Scholar 

  20. Woods, A., Longley, R. L., Tumova, S. & Couchman, J. R. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch. Biochem. Biophys. 374, 66–72 (2000).

    Article  CAS  Google Scholar 

  21. Wilcox-Adelman, S. et al. Syndecan-4: dispensable or indispensable? Glyco. J. 19, 305–313 (2003).

    Article  Google Scholar 

  22. Echtermeyer, F. et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J. Clin. Inv. 107, R9–R14 (2001).

    Article  CAS  Google Scholar 

  23. Martin, P. & Parkhurst, S. M. Parallels between tissue repair and embryo morphogenesis. Development 131, 3021–3034 (2004).

    Article  CAS  Google Scholar 

  24. Topczewski, J. et al. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell 1, 251–264 (2001).

    Article  CAS  Google Scholar 

  25. Ohkawara, B., Yamamoto, T. S., Tada, M. & Ueno, N. Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 130, 2129–2138 (2003).

    Article  CAS  Google Scholar 

  26. Moreno, M. et al. Biglycan is a new extracellular component of the Chordin–BMP4 signalling pathway. EMBO J. 24, 1397–1405 (2005).

    Article  CAS  Google Scholar 

  27. Sumanas, S. & Ekker, S. C. Xenopus frizzled-7 morphant displays defects in dorsoventral patterning and convergent extension movements during gastrulation. Genesis 30, 119–122 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Wessely, S. Piccolo, E. Brandan, J. Garrido and R. Mayor for comments on the manuscript. We thank S. Fraser, R. Harland, R. Keller, R. Moon and H. Steinbeisser for reagents. J.L. would like to thank E. De Robertis for the great years at UCLA. M.M. is a Comisión Nacional de Investigación, Ciencia y Tecnología (CONICYT) Ph.D. fellow. This work was supported by Fondo Nacional de Ciencia y Tecnología (FONDECYT, 1030481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Larraín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 and S6 (PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, R., Moreno, M., Oliva, C. et al. Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extension movements in Xenopus embryos. Nat Cell Biol 8, 492–500 (2006). https://doi.org/10.1038/ncb1399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing