Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization

Abstract

Growth of normal cells is anchorage dependent because signalling through multiple pathways including Erk, phosphatidylinositol-3-OH kinase (PI(3)K) and Rac requires integrin-mediated cell adhesion1. Components of these pathways localize to low-density, cholesterol-rich domains in the plasma membrane named 'lipid rafts'2,3 or 'cholesterol-enriched membrane microdomains' (CEMM)4. We previously reported that integrin-mediated adhesion regulates CEMM transport such that cell detachment from the extracellular matrix triggers CEMM internalization and clearance from the plasma membrane5. We now report that this internalization is mediated by dynamin-2 and caveolin-1. Internalization requires phosphorylation of caveolin-1 on Tyr 14. A shift in localization of phospho-caveolin-1 from focal adhesions to caveolae induces CEMM internalization upon cell detachment, which mediates inhibition of Erk, PI(3)K and Rac. These data define a novel molecular mechanism for growth and tumour suppression by caveolin-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caveolin-1 internalization.
Figure 2: Pathway of integrin-regulated GM1 internalization.
Figure 3: Requirement for caveolin-1.
Figure 4: Phospho-caveolin-1 mediates integrin-dependent membrane domain internalization.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Schwartz, M. A. Integrins, oncogenes, and anchorage independence. J. Cell Biol. 139, 575–578 (1997).

    Article  CAS  Google Scholar 

  2. Edidin, M. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

    Article  CAS  Google Scholar 

  3. Lagerholm, B. C., Weinreb, G. E., Jacobson, K. & Thompson, N. L. Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem. 56, 309–336 (2005).

    Article  CAS  Google Scholar 

  4. Grande, A., Echarri, A. & del Pozo, M. A. Integrin regulation of membrane domain trafficking and Rac targeting. Biochem. Soc. Trans. 33, 609–613 (2005).

    Article  Google Scholar 

  5. del Pozo, M. A. et al. Integrins regulate Rac targeting by internalization of membrane domains. Science 303, 839–842 (2004).

    Article  CAS  Google Scholar 

  6. del Pozo, M. A., Price, L. S., Alderson, N. B., Ren, X. D. & Schwartz, M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 19, 2008–2014 (2000).

    Article  CAS  Google Scholar 

  7. Parton, R. G. Caveolae — from ultrastructure to molecular mechanisms. Nat. Rev. Mol. Cell Biol. 4, 162–167 (2003).

    Article  CAS  Google Scholar 

  8. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  Google Scholar 

  9. Fielding, C. J. & Fielding, P. E. Caveolae and intracellular trafficking of cholesterol. Adv. Drug Deliv. Rev. 49, 251–264 (2001).

    Article  CAS  Google Scholar 

  10. Cao, H., Courchesne, W. E. & Mastick, C. C. A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J. Biol. Chem. 277, 8771–8774 (2002).

    Article  CAS  Google Scholar 

  11. Lee, H. et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol. Endocrinol. 14, 1750–1775 (2000).

    Article  CAS  Google Scholar 

  12. Engelman, J. A. et al. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem. 272, 16374–16381 (1997).

    Article  CAS  Google Scholar 

  13. Fiucci, G., Ravid, D., Reich, R. & Liscovitch, M. Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21, 2365–2375 (2002).

    Article  CAS  Google Scholar 

  14. Wiechen, K. et al. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am. J. Pathol. 159, 1635–1643 (2001).

    Article  CAS  Google Scholar 

  15. Capozza, F. et al. Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am. J. Pathol. 162, 2029–2039 (2003).

    Article  CAS  Google Scholar 

  16. Williams, T. M. et al. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J. Biol. Chem. 279, 51630–51646 (2004).

    Article  CAS  Google Scholar 

  17. Lee, H. et al. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. Am. J. Pathol. 161, 1357–1369 (2002).

    Article  CAS  Google Scholar 

  18. Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339–10343 (1995).

    Article  CAS  Google Scholar 

  19. Sabharanjak, S., Sharma, P., Parton, R. G. & Mayor, S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2, 411–423 (2002).

    Article  CAS  Google Scholar 

  20. Damm, E. M. et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 168, 477–488 (2005).

    Article  CAS  Google Scholar 

  21. Razani, B. et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276, 38121–38138 (2001).

    Article  CAS  Google Scholar 

  22. Mettouchi, A. et al. Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Mol. Cell 8, 115–127 (2001).

    Article  CAS  Google Scholar 

  23. Boyd, N. D., Chan, B. M. & Petersen, N. O. β1 integrins are distributed in adhesion structures with fibronectin and caveolin and in coated pits. Biochem. Cell Biol. 81, 335–348 (2003).

    Article  CAS  Google Scholar 

  24. Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127, 1199–1215 (1994).

    Article  CAS  Google Scholar 

  25. Aoki, T., Nomura, R. & Fujimoto, T. Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp. Cell Res. 253, 629–636 (1999).

    Article  CAS  Google Scholar 

  26. Wary, K. K., Mariotti, A., Zurzolo, C. & Giancotti, F. G. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625–634 (1998).

    Article  CAS  Google Scholar 

  27. Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E. & Gundersen, G. G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303, 836–839 (2004).

    Article  CAS  Google Scholar 

  28. Drab, M. et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449–2452 (2001).

    Article  CAS  Google Scholar 

  29. Sunaga, N. et al. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res. 64, 4277–4285 (2004).

    Article  CAS  Google Scholar 

  30. Machleidt, T., Li, W. P., Liu, P. & Anderson, R. G. Multiple domains in caveolin-1 control its intracellular traffic. J. Cell Biol. 148, 17–28 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. P. Lisanti for the caveolin-1-null MEFs, C. C. Mastick for the caveolinY14F vector, S. Schmid for the dynamin constructs, D. Castle for the Eps15DIII mutant and H68.4 monoclonal antibody, N. Meller for the Cdc42 inhibitor CBD-WASP, W.-P. Li, Y. Ying and J. Redick for assistance in electron microscopy analysis, M. C. Montoya and D. Megías for assistance with the Leica ultra-spectral confocal microscope, E. M. Moreno for technical assistance, and S. Schmid, M. Ginsberg, S. Shattil and K. Ley for critical reading of the manuscript. This work was supported by MEC (Spanish Ministry of Science and Education) through grants SAF2002-0245 and GEN2003-20239-C06-04 to M.A.d.P., a predoctoral fellowship (BEF-2003-2712, to A.G.-G.), and the Ramón y Cajal Program (to M.A.d.P.); and by EUROHORCS (European Heads Of Research Councils) and European Science Foundation (ESF) through a EURYI (European Young Investigator) Award to M.A.d.P.; USPHS grant RO1 GM47214 to M.A.S.; and grants from NIH and the Perot Family Foundation to R.G.W.A. A significant part of this work was performed while some of the authors were located in the Departments of Immunology (M.A.d.P. and N.B.A., from January 2003 to June 2004) and Cell Biology (M.A.d.P., N.B.A. and W.B.K. until June 2004, and M.A.S. until July 2002) at The Scripps Research Institute, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. del Pozo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Pozo, M., Balasubramanian, N., Alderson, N. et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 7, 901–908 (2005). https://doi.org/10.1038/ncb1293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing