Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration

Abstract

Ras proteins control the signalling pathways that are responsible for normal growth and malignant transformation1. Raf protein kinases are direct Ras effector proteins that initiate the mitogen-activated protein kinase (MAPK) cascade2, which mediates diverse biological functions such as cell growth, survival and differentiation3. Here we show that prohibitin, a ubiquitously expressed and evolutionarily conserved protein4 is indispensable for the activation of the Raf–MEK–ERK pathway by Ras. The membrane targeting and activation of C-Raf by Ras needs prohibitin in vivo. In addition, direct interaction with prohibitin is required for C-Raf activation. C-Raf kinase fails to interact with the active Ras induced by epidermal growth factor in the absence of prohibitin. Moreover, in prohibitin-deficient cells the adhesion complex proteins cadherin and β-catenin relocalize to the plasma membrane and thereby stabilize adherens junctions. Our data show an unexpected role of prohibitin in the activation of the Ras–Raf signalling pathway and in modulating epithelial cell adhesion and migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Knockdown of PHB induces change in epithelial cell morphology.
Figure 2: Knockdown of PHB induces adherens junction formation and changes in epithelial morphogenesis.
Figure 3: PHB is required for EGF-induced Raf–MAPK activation.
Figure 4: PHB is required for the activation of C-Raf by Ras.
Figure 5: PHB is required for 14-3-3 displacement from C-Raf.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  2. Kyriakis, J. M. et al. Raf-1 activates MAP kinase-kinase. Nature 358, 417–421 (1992).

    Article  CAS  Google Scholar 

  3. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nature Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  Google Scholar 

  4. McClung, J. K., Jupe, E. R., Liu, X. T. & Dell'Orco, R. T. Prohibitin: potential role in senescence, development, and tumor suppression. Exp. Gerontol. 30, 99–124 (1995).

    Article  CAS  Google Scholar 

  5. Machuy, N. et al. A global approach combining proteome analysis and phenotypic screening with RNA interference yields novel apoptosis regulators. Mol. Cell Proteomics 4, 44–55 (2004).

    Article  Google Scholar 

  6. Harari, D. & Yarden, Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19, 6102–6114 (2000).

    Article  CAS  Google Scholar 

  7. Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev. Cancer 4, 361–370 (2004).

    Article  CAS  Google Scholar 

  8. Spencer, K. S., Graus-Porta, D., Leng, J., Hynes, N. E. & Klemke, R. L. ErbB2 is necessary for induction of carcinoma cell invasion by ErbB family receptor tyrosine kinases. J. Cell Biol. 148, 385–397 (2000).

    Article  CAS  Google Scholar 

  9. Klemke, R. L. et al. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 137, 481–492 (1997).

    Article  CAS  Google Scholar 

  10. Dhillon, A. S., Meikle, S., Yazici, Z., Eulitz, M. & Kolch, W. Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J. 21, 64–71 (2002).

    Article  CAS  Google Scholar 

  11. Kolch, W. et al. Protein kinase Cα activates RAF-1 by direct phosphorylation. Nature 364, 249–252 (1993).

    Article  CAS  Google Scholar 

  12. Bruder, J. T., Heidecker, G. & Rapp, U. R. Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev. 6, 545–556 (1992).

    Article  CAS  Google Scholar 

  13. Hekman, M. et al. Associations of B- and C-Raf with cholesterol, phosphatidylserine, and lipid second messengers: preferential binding of Raf to artificial lipid rafts. J. Biol. Chem. 277, 24090–24102 (2002).

    Article  CAS  Google Scholar 

  14. Hekman, M. et al. Dynamic changes in C-Raf phosphorylation and 14–3-3 protein binding in response to growth factor stimulation: differential roles of 14–3-3 protein binding sites. J. Biol. Chem. 279, 14074–14086 (2004).

    Article  CAS  Google Scholar 

  15. Mineo, C., James, G. L., Smart, E. J. & Anderson, R. G. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem. 271, 11930–11935 (1996).

    Article  CAS  Google Scholar 

  16. Wang, S., Nath, N., Fusaro, G. & Chellappan, S. Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Mol. Cell Biol. 19, 7447–7460 (1999).

    Article  CAS  Google Scholar 

  17. Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R. & Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nature Med. 10, 625–632 (2004).

    Article  CAS  Google Scholar 

  18. Shields, J. M., Pruitt, K., McFall, A., Shaub, A. & Der, C. J. Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol. 10, 147–154 (2000).

    Article  CAS  Google Scholar 

  19. Kerkhoff, E. & Rapp, U. R. The Ras-Raf relationship: an unfinished puzzle. Adv. Enzyme Regul. 41, 261–267 (2001).

    Article  CAS  Google Scholar 

  20. Avruch, J. et al. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog. Horm. Res. 56, 127–155 (2001).

    Article  CAS  Google Scholar 

  21. Light, Y., Paterson, H. & Marais, R. 14–3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity. Mol. Cell Biol. 22, 4984–4996 (2002).

    Article  CAS  Google Scholar 

  22. Dumaz, N. & Marais, R. Protein kinase A blocks Raf-1 activity by stimulating 14–3-3 binding and blocking Raf-1 interaction with Ras. J. Biol. Chem. 278, 29819–29823 (2003).

    Article  CAS  Google Scholar 

  23. Kubicek, M. et al. Dephosphorylation of Ser-259 regulates Raf-1 membrane association. J. Biol. Chem. 277, 7913–7919 (2002).

    Article  CAS  Google Scholar 

  24. Ory, S., Zhou, M., Conrads, T. P., Veenstra, T. D. & Morrison, D. K. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14–3-3 binding sites. Curr. Biol. 13, 1356–1364 (2003).

    Article  CAS  Google Scholar 

  25. Sharma, A. & Qadri, A. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc. Natl Acad. Sci. USA 101, 17492–17497 (2004).

    Article  CAS  Google Scholar 

  26. Hirohashi, S. & Kanai, Y. Cell adhesion system and human cancer morphogenesis. Cancer Sci. 94, 575–581 (2003).

    Article  CAS  Google Scholar 

  27. Wang, K. J., Wang, R. T. & Zhang, J. Z. Identification of tumor markers using two-dimensional electrophoresis in gastric carcinoma. World J. Gastroenterol. 10, 2179–2183 (2004).

    Article  CAS  Google Scholar 

  28. Srisomsap, C. et al. Detection of cathepsin B up-regulation in neoplastic thyroid tissues by proteomic analysis. Proteomics 2, 706–712 (2002).

    Article  CAS  Google Scholar 

  29. Asamoto, M. & Cohen, S. M. Prohibitin gene is overexpressed but not mutated in rat bladder carcinomas and cell lines. Cancer Lett. 83, 201–207 (1994).

    Article  CAS  Google Scholar 

  30. Smart, E. J., Ying, Y. S., Conrad, P. A. & Anderson, R. G. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127, 1185–1197 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Oswald, D. Khalil, C. Dimmler, B. Fauler and U. Reichard for excellent technical assistance, T. Fowler for critical reading of the manuscript and the EURIT team for their help with siRNA validation. M. Selbach is thanked for kindly providing the Ras constructs and S. Lohmann for the VASP-P157 antibodies. This work was supported by grants from the Bundesministerium für Bildung und Forschung (BMBF) to T.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rudel.

Ethics declarations

Competing interests

A patent application has been filed.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajalingam, K., Wunder, C., Brinkmann, V. et al. Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nat Cell Biol 7, 837–843 (2005). https://doi.org/10.1038/ncb1283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing