Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new effector pathway links ATM kinase with the DNA damage response

Abstract

The related kinases ATM (ataxia-telangiectasia mutated) and ATR (ataxia-telangiectasia and Rad3-related) phosphorylate a limited number of downstream protein targets in response to DNA damage. Here we report a new pathway in which ATM kinase signals the DNA damage response by targeting the transcriptional cofactor Strap. ATM phosphorylates Strap at a serine residue, stabilizing nuclear Strap and facilitating formation of a stress-responsive co-activator complex. Strap activity enhances p53 acetylation, and augments the response to DNA damage. Strap remains localized in the cytoplasm in cells derived from ataxia telangiectasia individuals with defective ATM, as well as in cells expressing a Strap mutant that cannot be phosphorylated by ATM. Targeting Strap to the nucleus reinstates protein stabilization and activates the DNA damage response. These results indicate that the nuclear accumulation of Strap is a critical regulator in the damage response, and argue that this function can be assigned to ATM through the DNA damage-dependent phosphorylation of Strap.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA damage induces phosphorylation of Strap.
Figure 2: Intracellular localization of Strap and StrapS203A.
Figure 3: Strap localization in ataxia telangiectasia cells.
Figure 4: Strap Ser 203 regulates the interaction between Strap and p300 and the acetylation of p53.
Figure 5: Ser 203 is required for the p53 response.
Figure 6: Nuclear Strap undergoes DNA damage-dependent protein stabilization.
Figure 7: Nuclear Strap activates the DNA damage response.

Similar content being viewed by others

References

  1. Zhou, B.B. & Elledge, S.J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Abraham, R.T. Cell cycle checkpoint signalling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Khanna, K.K., Lavin, M.F., Jackson, S.P. & Mulhern, T.D. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ. 8, 1052–1065 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Shiloh, Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev. 11, 71–77 (2001).

    Article  CAS  Google Scholar 

  5. Walworth, N.C. Cell-cycle checkpoint kinases: checking in on the cell cycle. Curr. Opin. Cell Biol. 12, 697–704 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Canman, C.E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Khosravi, R. et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 14973–14977 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maya, R. et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 15, 1067–1077 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cortez, D., Wang, Y., Qin, J. & Elledge, S.J. Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Shieh, S.Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologues of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Falck, J., Mailand, N., Syljuasen, R.G., Bartek, J. & Lukas, J. The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Stevens, C., Smith, L. & La Thangue, N.B. Checkpoint kinase activates E2F-1 in response to DNA damage. Nature Cell Biol. 5, 401–409 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Peng, C.Y. et al. Mitotic and G2 checkpoint control: Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Lakin, N.D. & Jackson, S.P. Regulation of p53 in response to DNA damage. Oncogene 18, 7644–7655 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Chehab, N.H., Malikzay, A., Appel, M. & Halazonetis, T.D. Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14, 278–288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Giaccia, A.J. & Kastan, M.B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Meyn, M.S. Ataxia-telangiectasia, cancer and the pathobiology of the ATM gene. Clin. Genet. 55, 289–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Bell, D.W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev. 12, 2831–2841 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, L. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19, 1202–1209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Avantaggiati, M.L. et al. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89, 1175–1184 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Shikama, N. et al. A novel cofactor for p300 that regulates the p53 response. Mol. Cell 4, 365–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Demonacos, C., Krstic-Demonacos, M. & La Thangue, N.B. A TPR motif cofactor contributes to p300 activity in the p53 response. Mol. Cell 8, 71–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Bakkenist, C.J. & Kastan, M.B. DNA damage activates ATM through intramolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Barlow, C. et al. Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc. Natl. Acad. Sci. USA 96, 9915–9919 (1999).

    Article  CAS  Google Scholar 

  28. Beamish, H. & Lavin, M.F. Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. Int. J. Radiat. Biol. 65, 175–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Sarkaria, J.N. et al. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res. 58, 4375–4382 (1998).

    CAS  PubMed  Google Scholar 

  30. Stein, R.C. & Waterfield, M.D. PI3-kinase inhibition: a target for drug development? Mol. Med. Today 6, 347–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Di Tullio, R.A. et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biol. 4, 998–1002 (2002).

    Article  CAS  Google Scholar 

  32. Chan, H-M & La Thangue, N.B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363–2373 (2001).

    CAS  PubMed  Google Scholar 

  33. Gu, W. & Roeder, R.G. Activation of p53 sequence specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Freedman, D.A. & Levine, A.J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18, 7288–7293 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crighton, D. et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810–2820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Caldwell for assistance in preparing the manuscript. This work was supported by the Medical Research Council, the Leukaemia Research Fund, Cancer Research UK and the European Union. We thank M. B. Kastan for the wild-type and kinase-dead ATM expression vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas B. La Thangue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Fig. S1, Fig. S2, Fig. S3, Fig. S4 (PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demonacos, C., Krstic-Demonacos, M., Smith, L. et al. A new effector pathway links ATM kinase with the DNA damage response. Nat Cell Biol 6, 968–976 (2004). https://doi.org/10.1038/ncb1170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing