Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The endogenous ligand Stunted of the GPCR Methuselah extends lifespan in Drosophila

Abstract

Many extracellular signals are transmitted to the interior of the cell by receptors with seven membrane-spanning helices that trigger their effects by means of heterotrimeric guanine-nucleotide-binding regulatory proteins (G proteins)1,2,3,4. These G-protein-coupled receptors (GPCRs) control various physiological functions in evolution from pheromone-induced mating in yeast to cognition in humans5,6. The potential role of the G-protein signalling system in the control of animal ageing has been highlighted by the genetic revelation that mutation of a GPCR encoded by methuselah extends the lifespan of adult Drosophila flies7. How methuselah functions in controlling ageing is not clear. A first essential step towards the understanding of methuselah function is to determine the ligands of Methuselah. Here we report the identification and characterization of two endogenous peptide ligands of Methuselah, designated Stunted A and B. Flies with mutations in the gene encoding these ligands show an increase in lifespan and resistance to oxidative stress. We conclude that the Stunted–Methuselah system is involved in the control of animal ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification of endogenous ligands of the Mth receptor.
Figure 2: Synthetic peptide ligands of Mth.
Figure 3: Lifespan extension of sun mutant adult flies.
Figure 4: sun mutant flies show increased resistance to oxidative stress.

Similar content being viewed by others

References

  1. Gilman, A.G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Bourne, H.R., Sanders, D.A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Dohlman, H.G., Thorner, J., Caron, M.G. & Lefkowitz, R.J. Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem. 60, 653–688 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Simon, M.I., Strathmann, M.P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802–808 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Herskowitz, I. MAP kinase pathways in yeast: for mating and more. Cell 80, 187–197 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Morris, A.J. & Malbon, C.C. Physiological regulation of G protein-linked signaling. Physiol. Rev. 79, 1373–1430 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Lin, Y.J., Seroude, L. & Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282, 943–946 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Tu, Q. et al. Cloning, characterization and mapping of the human ATP5E gene, identification of pseudogene ATP5EP1, and definition of the ATP5E motif. Biochem. J. 347, 17–21 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Boyer, P.D. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Lai-Zhang, J., Xiao, Y. & Mueller, D.M. Epistatic interactions of deletion mutants in the genes encoding the F1-ATPase in yeast Saccharomyces cerevisiae. EMBO J. 18, 58–64 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Moser, T.L. et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl Acad. Sci. USA 96, 2811–2816 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moser, T.L. et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc. Natl Acad. Sci. USA 98, 6656–6661 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez, L.O. et al. Ectopic β-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421, 75–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Beisiegel, U. et al. Apolipoprotein E-binding proteins isolated from dog and human liver. Arteriosclerosis 8, 288–297 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Chang, S.Y., Park, S.G., Kim, S. & Kang, C.Y. Interaction of the C-terminal domain of p43 and the α subunit of ATP synthase. Its functional implication in endothelial cell proliferation. J. Biol. Chem. 277, 8388–8394 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Das, B., Mondragon, M.O., Sadeghian, M., Hatcher, V.B. & Norin, A.J. A novel ligand in lymphocyte-mediated cytotoxicity: expression of the β subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J. Exp. Med. 180, 273–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Park, Y., Kim, Y.J. & Adams, M.E. Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand–receptor coevolution. Proc. Natl Acad. Sci. USA 99, 11423–11428 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katzen, A.L. & Bishop, J.M. myb provides an essential function during Drosophila development. Proc. Natl Acad. Sci. USA 93, 13955–13960 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Simon, A.F., Shih, C., Mack, A. & Benzer, S. Steroid control of longevity in Drosophila melanogaster. Science 299, 1407–1410 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Beckman, K.B. & Ames, B.N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Sohal, R.S. & Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 273, 59–63 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kane, P.M. Regulation of V-ATPases by reversible disassembly. FEBS Lett. 469, 137–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).

    CAS  PubMed  Google Scholar 

  25. Raha, S. & Robinson, B.H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502–508 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Song, W. et al. Presynaptic regulation of neurotransmission in Drosophila by the G protein-coupled receptor Methuselah. Neuron 36, 105–119 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Young in whose laboratory the fly genetic work was done; T. Lieber and S. Kidd for advice and help; A. Katzen for the sunEM67 strain and its parental and rescuing fly strains; T. Kidd and D. Ish-Horowicz for the sunY6 strain and its parental fly strains; M. Lu and T. Maack for the use of their HPLC instruments; and D. McGarrigle for reading the manuscript. Mass spectrometric analyses and peptide sequencing were provided by the Rockefeller University Protein/DNA Technology Center. This work was supported by grants from the NIH (to X.-Y.H., M.Y. and Y.B.). X.-Y.H. is an Established Investigator of the American Heart Association, a Career Scientist of the Irma T. Hirschl Trust, and a Charles H. Leach Foundation Research Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Yun Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvejic, S., Zhu, Z., Felice, S. et al. The endogenous ligand Stunted of the GPCR Methuselah extends lifespan in Drosophila. Nat Cell Biol 6, 540–546 (2004). https://doi.org/10.1038/ncb1133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing