Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hsk1–Dfp1 is required for heterochromatin-mediated cohesion at centromeres

Abstract

Heterochromatin performs a central role in chromosome segregation and stability by promoting cohesion at centromeres1,2. Establishment of both heterochromatin-mediated silencing and cohesion requires passage through S phase, although the mechanism is unknown3,4. Here we demonstrate that Schizosaccharomyces pombe Hsk1 (CDC7), a conserved Dbf4-dependent protein kinase (DDK) that regulates replication initiation5, interacts with and phosphorylates the heterochromatin protein 1 (HP1) equivalent Swi6 (ref. 6). Hsk1 and its regulatory subunit Dfp1 function downstream of Swi6 localization to promote heterochromatin function and cohesion specifically at centromeres. This role for Hsk1–Dfp1 is separable from its replication initiation activity, providing a temporal link between S phase and centromere cohesion that is mediated by heterochromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hsk1–Dfp1 interacts with and phosphorylates Swi6.
Figure 2: S-phase activity of Hsk1–Dfp1 is required for equal chromosome segregation.
Figure 3: Hsk1–Dfp1 functions downstream of Swi6 localization.
Figure 4: Cohesion at centromeres requires Dfp1.

Similar content being viewed by others

References

  1. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol. 4, 89–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Uhlmann, F. & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095–1101 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Rusche, L.N., Kirchmaier, A.L. & Rine, J. The establishment, inheritance and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 481–516 (2003).

  5. Masai, H. & Arai, K. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J. Cell Physiol. 190, 287–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Ekwall, K. et al. The chromodomain protein Swi6 — a key component at fission yeast centromeres. Science 269, 1429–1431 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Snaith, H.A., Brown, G. & Forsburg, S.L. S. pombe Hsk1p is a potential Cds1p target required for genome integrity. Mol. Cell. Biol. 20, 7922–7932 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takeda, T. et al. Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast. Mol. Biol. Cell 12, 1257–1274. (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fung, A.D., Ou, J., Bueler, S. & Brown, G.W. A conserved domain of Schizosaccharomyces pombe dfp+ is uniquely required for chromosome stability following alkylation damage during S phase. Mol. Biol. Cell 22, 4477–4490 (2002).

    Article  CAS  Google Scholar 

  11. Smothers, J.F. & Henikoff, S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol. 10, 27–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4, 529–540 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, T., Heyduk, T. & Eissenberg, J.C. Phosphorylation site mutations in heterochromatin protein 1 (HP1) reduce or eliminate silencing activity. J. Biol. Chem. 276, 9512–9518 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Brown, G.W. & Kelly, T.J. Purification of Hsk1, a minichromosome maintenance protein kinase from fission yeast. J. Biol. Chem. 273, 22083–22090 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Tomonaga, T. et al. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phophorylated in the S phase. Genes Dev. 14, 2757–2770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pidoux, A.L., Uzawa, S., Perry, P.E., Cande, W.Z. & Allshire, R.C. Live analysis of lagging chromosomes during anaphase and their effect on spindle elongation rate in fission yeast. J. Cell Sci. 113, 4177–4191 (2000).

    CAS  PubMed  Google Scholar 

  17. Brown, G.W. & Kelly, T.J. Cell cycle regulation of Dfp1, an activator of the Hsk1 protein kinase. Proc. Natl Acad. Sci. USA 96, 8443–8448 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeda, T. et al. A fission yeast gene, him1(+)/dfp1(+), encoding a regulatory subunit for Hsk1 kinase, plays essential roles in S-phase initiation as well as in S-phase checkpoint control and recovery from DNA damage. Mol. Cell. Biol. 19, 5535–5547 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bernard, P., Hardwick, K. & Javerzat, J.-P. Fission yeast Bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis. J. Cell Biol. 143, 1775–1787 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grewal, S.I. & Klar, A.J. Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell 86, 95–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Ekwall, K. et al. Mutations in the fission yeast silencing factors Clr4+ and Rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J. Cell Sci. 109, 2637–2648 (1996).

    CAS  PubMed  Google Scholar 

  22. Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. & Allshire, R.C. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Allshire, R.C., Javerzat, J.P., Redhead, N.J. & Cranston, G. Position effect variegation at fission yeast centromeres. Cell 76, 157–169 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Allshire, R.C., Nimmo, E.R., Ekwall, K., Javerzat, J.P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 15, 218–233 (1995).

    Article  Google Scholar 

  25. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of the fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Ekwall, K., Cranston, G. & Allshire, R.C. Fission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation. Genetics 153, 1153–1169 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Partridge, J.F., Borgstrom, B. & Allshire, R.C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Edwards, R.J. & Carr, A.M. Analysis of radiation-sensitive mutants of fission yeast. Methods Enzymol. 283, 471–493 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Nabeshima, K. et al. Dynamics of centromeres during metaphase–anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle. Mol. Biol. Cell 9, 3211–3225 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are especially grateful to G.W. Brown for communicating results before publication, for providing dfp1 strains and for the Hsk1 kinase assay protocol. We thank H.-K. Huang for the Rad21 plasmid, J.-P. Javerzat for cosmids, and J. Partridge for RT-PCR protocols. We thank our colleagues in the Molecular and Cell Biology Laboratory for discussion and comments on the manuscript. J.M.B. was supported by the Damon Runyon Cancer Research Foundation, fellowship DRG-1634. P.B. was funded by a Wellcome Trust Travelling Research Fellowship, l′ Association pour la Recherche sur le Cancer, la Ligue Nationale Contre le Cancer and the Centre National de la Recherche Scientifique. R.C.A. is a Wellcome Trust Principal Research Fellow funded by EC RTN Contract: ERBFMRXCT980212 and core funding from the Medical Research Council, UK. This work was supported by American Cancer Society grant RSG-00-132-04-CCG and a Stohlman Scholarship from the Leukemia and Lymphoma Society to S.L.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Forsburg.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailis, J., Bernard, P., Antonelli, R. et al. Hsk1–Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nat Cell Biol 5, 1111–1116 (2003). https://doi.org/10.1038/ncb1069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing