Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex

Abstract

Studies of human Nijmegen breakage syndrome (NBS) cells have led to the proposal that the Mre11/Rad50/ NBS1 complex, which is involved in the repair of DNA double-strand breaks (DSBs), might also function in activating the DNA damage checkpoint pathways after DSBs occur1,2. We have studied the role of the homologous budding yeast complex, Mre11/Rad50/Xrs2, in checkpoint activation in response to DSB-inducing agents. Here we show that this complex is required for phosphorylation and activation of the Rad53 and Chk1 checkpoint kinases specifically in response to DSBs. Consistent with defective Rad53 activation, we observed defective cell-cycle delays after induction of DSBs in the absence of Mre11. Furthermore, after γ-irradiation phosphorylation of Rad9, which is an early event in checkpoint activation, is also dependent on Mre11. All three components of the Mre11/Rad50/Xrs2 complex are required for activation of Rad53, however, the Ku80, Rad51 or Rad52 proteins, which are also involved in DSB repair, are not. Thus, the integrity of the Mre11/Rad50/Xrs2 complex is specifically required for checkpoint activation after the formation of DSBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mre11 is involved in the DNA damage-dependent phosphorylation of Rad53 in response to γ-irradiation.
Figure 2: Analysis of transient cell-cycle delay in response to DSBs in mre11Δ cells.
Figure 3: Activation of both Chk1 and Rad9 after γ-irradiation requires Mre11.
Figure 4: The integrity of the Mre11 complex, but not Ku80, Rad51 nor Rad52, is required for checkpoint activation.

Similar content being viewed by others

References

  1. Haber, J. E. Cell 95, 583–586 (1998).

    Article  CAS  Google Scholar 

  2. Petrini, J. Am. J. Hum. Genet. 64, 1264–1269 (1999).

    Article  CAS  Google Scholar 

  3. Sanchez, Y. et al. Science 271, 357–360 (1996).

    Article  CAS  Google Scholar 

  4. Sun, Z., Fay, D. S., Marini, F., Foiani, M. & Stern, D. F. Genes Dev. 10, 395–406 (1996).

    Article  CAS  Google Scholar 

  5. de la Torre-Ruiz, M.-A., Green, C. M. & Lowndes, N. F. EMBO J. 17, 2687–2698 (1998).

    Article  CAS  Google Scholar 

  6. Pellicioli, A. et al. EMBO J. 18, 6561–6572 (1999).

    Article  CAS  Google Scholar 

  7. Paulovich, A. G. & Hartwell, L. H. Cell 82, 841–847 (1995).

    Article  CAS  Google Scholar 

  8. Aboussekhra, A. et al. EMBO J. 15, 3912–3922 (1996).

    Article  CAS  Google Scholar 

  9. Sanchez, Y. et al. Science 286, 1166–1171 (1999).

    Article  CAS  Google Scholar 

  10. Emili, A. Mol. Cell 2, 183–189 (1998).

    Article  CAS  Google Scholar 

  11. Vialard, J. E., Gilbert, C. S., Green, C. M. & Lowndes, N. F. EMBO J. 17, 5679–5688 (1998).

    Article  CAS  Google Scholar 

  12. Longhese, M. P. et al. EMBO J. 16, 5216–5226 (1997).

    Article  CAS  Google Scholar 

  13. Paciotti, V., Lucchini, G., Plevani, P. & Longhese, M. P. EMBO J. 17, 4199–4209 (1998).

    Article  CAS  Google Scholar 

  14. Paciotti, V., Clerici, M., Lucchini, G. & Longhese, M. P. Genes Dev. 14, 2046–2059 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Weinert, T. Curr. Opin. Genet. Dev. 8, 185–193 (1998).

    Article  CAS  Google Scholar 

  16. Lowndes, N. F. & Murguia, J. R. Curr. Opin. Genet. Dev. 10, 17–25 (2000).

    Article  CAS  Google Scholar 

  17. Usui, T. et al. Cell 95, 705–716 (1998).

    Article  CAS  Google Scholar 

  18. Nelms, B. E., Maser, R. S., Mackay, J. F., Lagally, M. G. & Petrini, J. H. Science 280, 590–590 (1998).

    Article  CAS  Google Scholar 

  19. Neecke, H., Lucchini, G. & Longhese, M. P. EMBO J. 18, 4485–4497 (1999).

    Article  CAS  Google Scholar 

  20. Carney, J. P. et al. Cell 93, 477–486 (1998).

    Article  CAS  Google Scholar 

  21. Stewart, G. S. et al. Cell 99, 577–587. (1999).

    Article  CAS  Google Scholar 

  22. Matsuura, K. et al. Biochem. Biophys. Res. Commun. 242, 602–607 (1998).

    Article  CAS  Google Scholar 

  23. Yamazaki, V., Wegner, R.-D. & Kirchgessner, C. U. Cancer Res. 58, 2316–2322 (1998).

    CAS  PubMed  Google Scholar 

  24. Antoccia, A. et al. Int. J. Radiat. Biol. 75, 583–591 (1999).

    Article  CAS  Google Scholar 

  25. Girard, P. et al. Cancer Res. 60, 4881–4888 (2000).

    CAS  PubMed  Google Scholar 

  26. Antoccia, A., Ricordy, R., Maraschio, P., Prudente, S. & Tanzarella, C. Int. J. Radiat. Biol. 71, 41–49 (1997).

    Article  CAS  Google Scholar 

  27. Pincheira, J., Bravo, M. & Santos, M. Clin. Genet. 53, 262–267 (1998).

    Article  CAS  Google Scholar 

  28. Xiao, Y. & Weaver, D. T. Nucleic Acids Res. 25, 2985–2991 (1997).

    Article  CAS  Google Scholar 

  29. Luo, G. et al. Proc. Natl Acad. Sci. USA 96, 7376–7381 (1999).

    Article  CAS  Google Scholar 

  30. Zhu, J., Petersen, S., Tessarollo, L. & Nussenzweig, A. Curr. Biol. 11, 105–109 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Diffley, S. Jackson and M. P. Longhese for yeast strains and plasmids; A. Verreault, S. Jackson and S. West for critical reading of the manuscript. We are indebted to C. Green and J. Murguia for many stimulating discussions. We also thank B. Sedgewick and A. Verreault for their generosity. M.G. was supported in part by La Ligue Nationale contre le Cancer, Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel F. Lowndes.

Supplementary information

Supplementary figures and comments

Figure S1 MRE11-dependent phosphorylation of Rad53 (PDF 144 kb)

Figure S2 Ddc2/Lcd1 and Ddc1 are phosphorylated in mre11Δ cells in the absence of DNA damaging agents.

Comment on supplementary results.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grenon, M., Gilbert, C. & Lowndes, N. Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat Cell Biol 3, 844–847 (2001). https://doi.org/10.1038/ncb0901-844

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0901-844

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing