Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42

Abstract

In Saccharomyces cerevisiae cells, high external osmolarity leads to the activation of a p38-related mitogen-activated protein (MAP) kinase though Pbs2. Pbs2 tagged with green fluorescent protein (Pbs2–GFP) is evenly distributed in the cytoplasm but excluded from the nucleus before and after exposure to stress. Here we show that a catalytically inactive form of Pbs2 attains a highly polarised localization during osmostress. This phenomenon depends of the osmosensor Sho1 and on a functional Cdc42 GTPase. Cdc42, but not the actin cytoskeleton, influences Sho1-dependent activation of the MAP kinase. Sho1 itself accumulates at sites of polar growth, but independently of stress conditions and Cdc42. These observations allow us to define the sequence of events that occurs during propogation of osmostress signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Osmostress-induced effects on Pbs2 localization.
Figure 2: Stress-induced polarization of Pbs2(K389M) requires Sho1.
Figure 3: Sho1 is present in the bud and the bud neck.
Figure 4: Cdc42 is required for Sho1-dependent Hog1 activation.
Figure 5: Effects of cdc42-1 and ste11 on localization of Sho1 and Pbs2(K389M).
Figure 6: Lack of kinase activation causes cortical accummulation of Pbs2–GFP.
Figure 7: Model of the functional order of interactions required for the osmoresponse.

Similar content being viewed by others

References

  1. Toone, W. M. & Jones, N. Stress-activated signalling pathways in yeast. Genes Cells 3, 485– 498 (1998).

    Article  CAS  Google Scholar 

  2. Posas, F., Takekawa, M. & Saito, H. Signal transduction by MAP kinase cascades in budding yeast. Curr. Opin. Microbiol. 1, 175– 182 (1998).

    Article  CAS  Google Scholar 

  3. Kyriakis, J. M. Making the connection: coupling of stress-activated ERK/MAPK (extracellular-signal-regulated kinase/mitogen-activated protein kinase) core signalling modules to extracellular stimuli and biological responses. Biochem. Soc. Symp. 64, 29– 48 (1999).

    CAS  Google Scholar 

  4. Maeda, T., Wurgler-Murphy, S. M. & Saito, H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242– 245 (1994).

    Article  CAS  Google Scholar 

  5. Maeda, T., Takekawa, M. & Saito, H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269, 554– 558 (1995).

    Article  CAS  Google Scholar 

  6. Posas, F. & Saito, H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702– 1705 (1997).

    Article  CAS  Google Scholar 

  7. Roberts, R. & Fink, G. R. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 15, 2974– 2985 (1994).

    Article  Google Scholar 

  8. Whitmarsh, A. J. & Davis, R. J. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23, 481– 485 (1998).

    Article  CAS  Google Scholar 

  9. Garrington, T. P. & Johnson, G. L. Organization and regulation of mitogen-activated protein kinase signalling pathways. Curr. Opin. Cell Biol. 11, 211– 218 (1999)

    Article  CAS  Google Scholar 

  10. Kjoller, L. & Hall, A. Signalling to Rho GTPases. Exp. Cell Res. 253, 166– 179 (1999).

    Article  CAS  Google Scholar 

  11. Simon, M. N. et al. Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway. Nature 376, 702– 705 (1995).

    Article  CAS  Google Scholar 

  12. Zhao, Z. S., Leung, T., Manser, E. & Lim, L. Pheromone signalling in Saccharomyces cerevisiae requires the small GTP-binding protein Cdc42p and its activator CDC24. Mol. Cell Biol. 15, 5246– 5257 (1995).

    Article  CAS  Google Scholar 

  13. Mosch, H. U., Roberts, R. L. & Fink, G. R. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 28, 5352– 5356 (1996).

    Article  Google Scholar 

  14. Pryciak, P. M. & Huntress, F. A. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gβγ complex underlies activation of the yeast pheromone response pathway. Genes Dev. 12, 2684– 2697 (1998).

    Article  CAS  Google Scholar 

  15. Leberer, E. et al. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J. 16, 83– 97 (1997).

    Article  CAS  Google Scholar 

  16. Peter, M., Neiman, A. M., Park, H. O., van Lohuizen, M. & Herskowitz, I. Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 24, 7046– 7059 (1996).

    Article  Google Scholar 

  17. Oehlen, L. J. W. M. & Cross, F. R. The role of Cdc42 in signal transduction and mating of the budding yeast Saccharomyces cerevisiae. J. Biol. Chem. 273, 8556– 8559 (1998).

    Article  CAS  Google Scholar 

  18. Ferrigno, P., Posas, F., Koepp, D., Saito, H. & Silver, P. A. Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J. 17, 5606– 5614 (1998).

    Article  CAS  Google Scholar 

  19. Reiser, V., Ruis, H. & Ammerer, G. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell 10, 1147– 1161 (1999).

    Article  CAS  Google Scholar 

  20. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399– 416 (1997).

    Article  CAS  Google Scholar 

  21. Palmieri, S. J. & Haarer, B. K. Polarity and division site specification in yeast. Curr. Opin. Microbiol. 6, 678– 686 (1998).

    Article  Google Scholar 

  22. Johnson, D. I. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54– 105 (1999).

    CAS  Google Scholar 

  23. Tjandra, H., Compton, J. & Kellogg, D. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family. Curr. Biol. 10, 991– 1000 (1998).

    Article  Google Scholar 

  24. O'Rourke, S. M. & Herskowitz, I. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev. 12, 2874– 2886 (1998).

    Article  CAS  Google Scholar 

  25. Posas, F., Witten, E. A. & Saito, H. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 18, 5788– 5796 (1998).

    Article  CAS  Google Scholar 

  26. Miller, P. J. & Johnson, D. I. Characterization of the Saccharomyces cerevisiae cdc42-1 ts allele and new temperature-conditional-lethal cdc42 alleles. Yeast 13, 561– 572 (1997).

    Article  CAS  Google Scholar 

  27. Kozminski, K. G., Chen, A. J., Rodal, A. A., & Drubin, D. G. Functions and functional domains of the GTPase Cdc42p. Mol. Biol. Cell 11, 339– 354 (2000).

    Article  CAS  Google Scholar 

  28. Cook, J. G., Bardwell, L. & Thorner, J. Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390, 85– 88 (1997).

    Article  CAS  Google Scholar 

  29. Madhani, H. D., Styles, C. A. & Fink, G. R. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91, 673– 684 (1997).

    Article  CAS  Google Scholar 

  30. Rose, M. D., Winston, F. & Hieter, P. Methods in Yeast Genetics: A Laboratory Course Manual (Cold Spring Harbor Laboratory Press, New York, 1990).

    Google Scholar 

  31. Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963– 972 (1999).

    Article  CAS  Google Scholar 

  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd ed. {AU: chapter/page no?} (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  33. Higuchi, R. in PCR Protocols, A Guide to Methods and Applications (eds Innis, M. A., Gelfand, D. H. & Sninsky, J. J.) 177– 183 (Academic, New York, 1990).

    Google Scholar 

  34. Gietz, R. D. & Sugino, A. New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527– 534 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Drubin, K. Nasmyth, M. Ramezani Rad, S. O'Rourke and H. Saito for strains and plasmids, H. Ruis and all the members of the Ruis and Ammerer laboratories for discussions and material support, and L. Huber and P. Kovarik for comments on the manuscript. We are greatful to S. Reipert for help with the laser-scanning microscope. Latrunculin A was kindly supplied by M. Sanders. This work was partly supported by TMR Network grant ERBFMRX-CT96-0041 (to G.A.) and by student program grant W001 from the Austrian Fonds zur Förderung Wissenschaftlicher Forschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Ammerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiser, V., Salah, S. & Ammerer, G. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nat Cell Biol 2, 620–627 (2000). https://doi.org/10.1038/35023568

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023568

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing