Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion

Abstract

Activation of calcium-ion (Ca2+) channels on the plasma membrane and on intracellular Ca2+ stores, such as the endoplasmic reticulum, generates local transient increases in the cytosolic Ca2+ concentration that induce Ca2+ uptake by neighbouring mitochondria. Here, by using mitochondrially targeted aequorin proteins with different Ca2+ affinities, we show that half of the chromaffin-cell mitochondria exhibit surprisingly rapid millimolar Ca2+ transients upon stimulation of cells with acetylcholine, caffeine or high concentrations of potassium ions. Our results show a tight functional coupling of voltage-dependent Ca2+ channels on the plasma membrane, ryanodine receptors on the endoplasmic reticulum, and mitochondria. Cell stimulation generates localized Ca2+ transients, with Ca2+ concentrations above 20–40 µM, at these functional units. Protonophores abolish mitochondrial Ca2+ uptake and increase stimulated secretion of catecholamines by three- to fivefold. These results indicate that mitochondria modulate secretion by controlling the availability of Ca2+ for exocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of high K+ concentrations or caffeine on [Ca2+]M, measured with AEQ1 or AEQ2.
Figure 2: Effects of high K+ concentrations or caffeine on [Ca2+]M measured with AEQ3.
Figure 3: Effects of CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, and temperature on the rate of [Ca2+]M decrease after stimulation.
Figure 4: Dependence of the rate of mitochondrial Ca2+ uptake on [Ca2+]c.
Figure 5: CCCP enhances secretory responses evoked by acetylcholine, high K+ concentration or caffeine.
Figure 6: The complex functional unit responsible for the generation of local high [Ca2+]c transients and catecholamine secretion in a bovine chromaffin cell.

Similar content being viewed by others

References

  1. Rizzuto, R., Brini, M., Murgia, M. & Pozzan, T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744–747 (1993).

    Article  CAS  Google Scholar 

  2. Rizzuto, R., Bastianutto, C., Brini, M., Murgia, M. & Pozzan, T. Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 126, 1183–1194 (1994).

    Article  CAS  Google Scholar 

  3. Brini, M. et al. Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes. Mol. Biol. Cell 8, 129–143 (1997).

    Article  CAS  Google Scholar 

  4. Robb-Gaspers, L. D. et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J. 17, 4987–5000 (1998).

    Article  CAS  Google Scholar 

  5. Werth, J. L. & Thayer, S. A. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J. Neurosci. 14, 346–356 (1994).

    Article  Google Scholar 

  6. White, R. J. & Reynolds, I. J. Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurons. J. Physiol. (Lond.) 498, 31–47 (1997).

    Article  CAS  Google Scholar 

  7. Park, Y. B., Herrington, J., Babcock, D. F. & Hille, B. Ca2+ clearance mechanisms in isolated rat adrenal chromaffin cells. J. Physiol. (Lond.) 492, 329–346 (1996).

    Article  CAS  Google Scholar 

  8. Herrington, J., Park, Y. B., Babcock, D. F. & Hille, B. Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron 16, 219–228 (1996).

    Article  CAS  Google Scholar 

  9. Babcock, D. F., Herrington, J., Park, Y.-B. & Hille, B. Mitochondrial participation in the intracellular Ca2+ network. J. Cell. Biol. 136, 833–843 (1997).

    Article  CAS  Google Scholar 

  10. Xu, T., Naraghi, M., Kang, H. & Neher, E. Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys. J. 73, 532–545 (1997).

    Article  CAS  Google Scholar 

  11. Duchen, M. R. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol. (Lond.) 516, 1–17 (1999).

    Article  CAS  Google Scholar 

  12. Schinder, A. F., Olson, E. C., Spitzer, N. C. & Montal, M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16, 6125–6133 (1996).

    Article  CAS  Google Scholar 

  13. Di Lisa, F. & Bernardi, P. Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol. Cell Biochem. 184, 379–391 (1998).

    Article  CAS  Google Scholar 

  14. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  Google Scholar 

  15. Montero, M. et al. Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J. 14, 5467–5475 (1995).

    Article  CAS  Google Scholar 

  16. Montero, M., Barrero, M. J. & Alvarez, J. [Ca2+] microdomains control agonist-induced Ca2+ release in intact HeLa cells. FASEB J. 11, 881–885 (1997).

    Article  CAS  Google Scholar 

  17. Barrero, M. J., Montero, M. & Alvarez, J. Dynamics of [Ca2+] in the endoplasmic reticulum and cytoplasm of intact HeLa cells. J. Biol. Chem. 272, 27694–27699 (1997).

    Article  CAS  Google Scholar 

  18. Montero, M. et al. Ca2+ homeostasis in the endoplasmic reticulum: coexistence of high and low [Ca2+] subcompartments in intact HeLa cells. J. Cell Biol. 139, 601–611 (1997).

    Article  CAS  Google Scholar 

  19. Alonso, M. T. et al. Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J. Cell Biol. 144, 241–254 (1999).

    Article  CAS  Google Scholar 

  20. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  Google Scholar 

  21. Csordás, G., Thomas, A. P. & Hajnóczky, G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J. 18, 96–108 (1999).

    Article  Google Scholar 

  22. Uceda, G., García, A. G., Guantes, J. M., Michelena, P. & Montiel, C. Effects of Ca2+ channel antagonist subtypes on mitochondrial transport. Eur. J. Pharmacol. 289, 73–80 (1995).

    Article  CAS  Google Scholar 

  23. von Rüden, L. & Neher, E. A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262, 1061–1065 (1993).

    Article  Google Scholar 

  24. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  25. Alonso, M. T. et al. Functional measurements of [Ca2+] in the endoplasmic reticulum using a herpes virus to deliver targeted aequorin. Cell Calcium 24, 87–96 (1998).

    Article  CAS  Google Scholar 

  26. Borges, R., Sala, F. & García, A. G. Continuous monitoring of catecholamine release from perfused cat adrenals. J. Neurosci. Meth. 16, 1986).

Download references

Acknowledgements

We acknowledge financial support from the Dirección General de Enseñanza Superior (grant PM98/0142 to J.A. and grant PB97/0474 to J.G.-S.), from the Dirección General de Investigación Científica y Técnica (grant PB94/0150) and from Janssen-Cilag to A.G.G., and from Junta de Castilla y León (grant VA19/99 to J.A. and grant VA62/99 to M.T.A.). I.C.-I. and A.A. hold fellowships from the Ministerio de Educación y Ciencia. We thank C. González and T. Pozzan for helpful comments, and J. Fernández for technical assistance.

Correspondence and requests for materials should be addressed to J.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero, M., Alonso, M., Carnicero, E. et al. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2, 57–61 (2000). https://doi.org/10.1038/35000001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing