Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system

Abstract

An increasing number of microbial genomes have been completely sequenced, and functional analyses of these genomic sequences are under way. To facilitate these analyses, we have developed a genome-engineering tool for determining essential genes and minimizing bacterial genomes. We made two large pools of independent transposon mutants in Escherichia coli using modified Tn5 transposons with two different selection markers and precisely mapped the chromosomal location of 800 of these transposons. By combining a mapped transposon mutation from each of the mutant pools into the same chromosome using phage P1 transduction and then excising the flanked genomic segment by Cre-mediated loxP recombination, we obtained E. coli strains in which large genomic fragments (59–117 kilobases) were deleted. Some of these individual deletions were then combined into a single “cumulative deletion strain” that lacked 287 open reading frames (313.1 kilobases) but that nevertheless exhibited normal growth under standard laboratory conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tn5-mediated insertions of the Cre/loxP excision system and deletion of the target regions.
Figure 2: Physical maps of the Cmr and Kmr inserts.
Figure 3: Deletion of genomic segments and confirmation by PCR.

Similar content being viewed by others

References

  1. Schmid, M.B., Kapur, N., Isaacson, D.R., Lindroos, P. & Sharpe, C. Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium. Genetics 123, 625–663 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Arigoni, F. et al. A genome-based approach for the identification of essential bacterial genes. Nat. Biotechnol. 16, 851–856 (1998).

    Article  CAS  Google Scholar 

  3. Mushegian, A.R. & Koonin, E.V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. USA 93, 10268–10273 (1996).

    Article  CAS  Google Scholar 

  4. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  5. Itaya, M. An estimation of minimal genome size required for life. FEBS Lett. 362, 257–260 (1995).

    Article  CAS  Google Scholar 

  6. Akerley, B.J. et al. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 99, 966–971 (2002).

    Article  CAS  Google Scholar 

  7. Blattner, F.R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).

    Article  CAS  Google Scholar 

  8. Tao, H., Bausch, C., Richmond, C., Blattner, F.R. & Conway, T. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181, 6425–6440 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Koob, M.D., Shaw, A.J. & Cameron, D.C. Minimizing the genome of Escherichia coli. Ann. N. Y. Acad. Sci. 745, 1–3 (1994).

    Article  CAS  Google Scholar 

  10. Yoon, Y.G., Cho, J.H. & Kim, S.C. Cre/loxP-mediated excision and amplification of the Escherichia coli genome. Genet. Anal. 14, 89–95 (1998).

    Article  CAS  Google Scholar 

  11. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  12. Posfai, G. et al. In vivo excision and amplification of large segments of the Escherichia coli genome. Nucleic Acids Res. 22, 2392–2398 (1994).

    Article  CAS  Google Scholar 

  13. Hasan, N., Koob, M. & Szybalski, W. Escherichia coli genome targeting, I. Cre-lox-mediated in vitro generation of ori- plasmids and their in vivo chromosomal integration and retrieval. Gene 150, 51–56 (1994).

    Article  CAS  Google Scholar 

  14. Kolisnychenko, V. et al. Engineering a reduced Escherichia coli genome. Genome Res. 12, 640–647 (2002).

    Article  CAS  Google Scholar 

  15. Szybalski, W. From the double-helix to novel approaches to the sequencing of large genomes. Gene 135, 279–290 (1993).

    Article  CAS  Google Scholar 

  16. Pratt, L.A. & Kolter, R. Genetic analysis of Esherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285–293 (1998).

    Article  CAS  Google Scholar 

  17. Lawrence, J.G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95, 9413–9417 (1998).

    Article  CAS  Google Scholar 

  18. Armstrong, K.A. A 37 × 103 molecular weight plasmid-encoded protein is required for replication and copy number control in the plasmid pSC101 and its temperature-sensitive derivatives pHS1. J. Mol. Biol. 175, 331–348 (1984).

    Article  CAS  Google Scholar 

  19. Thompson, J.R., Register, E., Curotto, J., Kurtz, M. & Kelly, R. An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast 14, 565–571 (1998).

    Article  CAS  Google Scholar 

  20. Grant, S.G., Jessee, J., Bloom, F.R. & Hanahan, D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Natl. Acad. Sci. USA 87, 4645–4649 (1990).

    Article  CAS  Google Scholar 

  21. Goryshin, I.Y., Jendrisak, J., Hoffman, L.M., Meis, R. & Reznikoff, W.S. Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 18, 97–100 (2000).

    Article  CAS  Google Scholar 

  22. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual, Edn. 3 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001).

    Google Scholar 

  23. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  24. Miller, J.H. A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Research Laboratory Program (2000-N-NL-01-C-160) and the Molecular Medicine Research Program (00-J-MM-01-B-01) from the Korean Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Chang Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, B., Sung, B., Koob, M. et al. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20, 1018–1023 (2002). https://doi.org/10.1038/nbt740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing