Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adenoviral preterminal protein stabilizes mini-adenoviral genomes in vitro and in vivo

Abstract

In the absence of host immunity, nonintegrating, first-generation adenoviral vectors remain stable in the nucleus of quiescent transduced cells in mice. A mini-adenoviral genome (9 kb) deleted for viral E1, E2, E3, and late genes, but containing the viral inverted terminal repeats (ITRs), transgene expression cassette (human α1-antitrypsin), and the viral E4 genes was equally efficient at transducing cells in vitro or in vivo as first generation, E1-deleted vectors. In contrast to a first generation vector, gene expression as well as vector DNA was short-lived in cells transduced with the deleted adenoviral genome. We demonstrate that coexpression of the adenoviral E2-preterminal protein from the vector or in trans stabilizes the mini-genome in vitro and in vivo without evidence of cellular toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boucher, R.C. 1996. Current status of CF gene therapy. Trends Genet. 12: 81–84.

    Article  CAS  PubMed  Google Scholar 

  2. Yang, Y., Nunes, F.A., Berensci, K., Furth, E.E., Gonzol, E. and Wilson, J.M. 1994. Cellular immunity to viral antigens limits E1 deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91: 4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lieber, A., He, C.-Y., Kirillova, I. and Kay, M.A. 1996. Recombinant adenoviruses with large deletions generated by cre-mediated excision exhibit different biological properties compared with first generation vectors in vitro and in vivo. J. Virol. 70: 8944–8960.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shenk, T. 1996. Adenoviridae: the viruses and their replication, pp. 2111–2148 in Virology, Vol. 2. Fields, B.N. (ed.). Lippincott-Raven Publisher, Philadelphia, PA.

    Google Scholar 

  5. Van der Vliet, P.C. 1995. Adenovirus replication, pp. 1–31 in The molecular repertoire of adenoviruses, Vol. 2. Doerfler, W. and Boehm, P. (eds.). Springer-Verlag, Berlin.

    Google Scholar 

  6. Hay, R.T., Freeman, A., Leith, I., Monaghan, A. and Webster, A. 1995. Molecular interaction during adenovirus replication, pp. 31–43 in The molecular repertoire of adenoviruses, Vol. 2. Doerfler, W. and Boehm, P. (eds.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  7. Angeletti, P.C. and Engler, J.A. 1996. Tyrosine kinase-dependent release of an ade-noviral preterminal protein complex from the nuclear matrix. J. Virol. 70: 3060–3067.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fredman, J.N. and Engler, J.A. 1993. Adenovirus precurser to terminal protein interacts with the nuclear matrix in vivo and in vitro. J. Virol. 67: 3384–3395.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stratford Perricaudet, L.D., Makeh, I., Perricaudet, M. and Briand, P. 1992. Widespread long-term gene transfer to mouse skeletal muscles and heart. J. Clin. Invest. 90: 626–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Q., Kay, M.A., Finegold, M., Perricaudet, S. and Woo, S.L. 1993. Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum. Gene Ther. 4: 403–409.

    Article  CAS  PubMed  Google Scholar 

  11. Vrancken-Peeters, M.J.T.F.D., Lieber, A., Perkins, J. and Kay, M.A. 1996. A method for multiple portal vein infusions in mice: quantitaion of adenovirus-mediated hepatic gene transfer. Biotechniques 20: 278–285.

    Article  CAS  PubMed  Google Scholar 

  12. Schowalter, D.B., Tubb, J.C., Wilson, C.B. and Kay, M.A. 1997. Heterologous expression of adenovirus E3-gp19k in an E1a-deleted adenovirus vector inhibits MHC I expression in vitro, but does not prolong transgene expression in vivo. Gene Ther. 4: 351–360.

    Article  CAS  PubMed  Google Scholar 

  13. Schaack, J., Guo, X., Ho, W.Y.-W., Karlok, M., Chen, C., and Ornelles, D Adenovirus type 5 precurser terminal protein-expressing 293 and HeLa cell lines. J. Virol. 69: 4079–4085. 1995.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Langer, S.J. and Schaack, J. 1996. 293 cell lines that inducibly express high levels of adenovirus type 5 precurser terminal protein. Virology 221: 172–179.

    Article  CAS  PubMed  Google Scholar 

  15. Parks, R.J. and Graham, F.L. 1997. A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J. Virol. 71: 3293–3298.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Blencowe, B.J., Nickerson, J.A., Issner, R., Penman, S., Stein, J.B., Lian, J.B. and Stein, G.S. 1994. Association of nuclear matrix antigens with exon-contain-ing splicing complexes. J.Cell Biol. 127: 593–607.

    Article  CAS  PubMed  Google Scholar 

  17. Bodnar, J.W., Hanson, P.I., Polvino-Bodnar, M., Zempsky, W. and Ward, D.C. The terminal regions of adenovirus and minute virus of mice are preferentially associated with the nuclear matrix in infected cells. J. Virol. 63: 4344–4353.

  18. Wong, M.L. and Hsu, M.T. 1989. Linear adenovirus DNA is organized into super-coiled domains in virus particles. Nucl. Acids Res. 17: 3536–3550.

    Article  Google Scholar 

  19. Gertzenberg, R.H., Pienta, K.J., Ward, W.S. and Coffey, D.S. 1991. Nuclear structure and the three-dimensional organization of DNA. J. Cell. Biochem. 47: 289–299.

    Article  Google Scholar 

  20. Mirkovitch, J., Mirault, M.E. and Laemmli, U.K. 1984. Organization of the higher-order chromatin loop: specific DNA attachment sites on the nuclear scaffold. Cell 39: 223–232.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar–Singh, R. and Chamberlain, J.S. 1996. Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells. Hum. Mol. Genet. 5: 913–921.

    Article  PubMed  Google Scholar 

  22. Parks, R.J., Chen, L., Anton, M., Sankar, U., Rudnicki, M.A. and Graham, F.L. 1996. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93: 13565–13570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kochanek, S., Clemens, P.R., Mitani, K., Chen, H.H., Chan, S. and Caskey, C.T. 1996. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc. Natl. Acad. Sci. USA 93: 5731–5736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hardy, S., Kitamura, M., Harris-Stansil, T., Dai, Y. and Phipps, M.L. 1997. Construction of adenovirus vectors through Cre-lox recombination. J. Virol. 71: 1842–1849.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nelson, J. and Kay, M.A. 1997. Persistence of recombinant adenovirus in vivo is not dependent on vector DNA replication. J. Virol.In press.

  26. Zhou, H., O'Neal, W., Morral, N. and Beaudet, A.L. 1996. Development of a complementing cell line and a system for construction of adenoviruse vectors with E1 and E2a deleted. J. Virol. 70: 7030–7038.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kay, M.A., Graham, R., Leland, R. and Woo, S.L. 1995. Therapeutic serum concentrations of human alpha-1 -antitrypsin after adenoviral-mediated gene transfer into mouse hepatocytes. Hepatology 21: 815–819.

    CAS  PubMed  Google Scholar 

  28. Ponder, K.P., Dunbar, R.R., Wilson, D.R., Darlington, G.J. and Woo, S.L.C. 1991. Evaluation of relative promoter strength in primary hepatocytes using optimized lipofection. Hum. Gene Ther. 2: 41–52.

    Article  CAS  PubMed  Google Scholar 

  29. Lieber, A., Vrancken Peeters, M.J.T.F.D., Gown, A., Perkins, J. and Kay, M.A. 1995. A modified urokinase plasminogen activator induces liver regeneration without bleeding. Hum. Gene Ther. 6: 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  30. Fitzgerald, M., Webber, E., Donovan, J. and Fausto, N. 1995. Rapid DNA binding by nuclear factor kB in hepatocytes at the start of liver regeneration. Cell Growth Differ. 6: 417–427.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieber, A., He, CY. & Kay, M. Adenoviral preterminal protein stabilizes mini-adenoviral genomes in vitro and in vivo. Nat Biotechnol 15, 1383–1387 (1997). https://doi.org/10.1038/nbt1297-1383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1297-1383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing