Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Stable correction of a genetic deficiency in human cells by an episome carrying a 115 kb genomic transgene

Abstract

Persistent expression of a transgene at therapeutic levels is required for successful gene therapy, but many small vectors with heterologous promoters are prone to vector loss and transcriptional silencing. The delivery of genomic DNA would enable genes to be transferred as complete loci, including regulatory sequences, introns, and native promoter elements. These elements may be critical to ensure prolonged, regulated, and tissue-specific transgene expression. Many studies point to considerable advantages to be gained by using complete genomic loci in gene expression1,2,3. Large-insert vectors incorporating elements of the bacterial artificial chromosome (BAC) cloning system4, and the episomal maintenance mechanisms of Epstein–Barr virus (EBV), can shuttle between bacteria and mammalian cells, allowing large genomic loci to be manipulated conveniently5. We now demonstrate the potential utility of such vectors by stably correcting a human genetic deficiency in vitro. When the complete hypoxanthine phosphoribosyltransferase (HPRT) locus of 115 kilobases (kb) was introduced into deficient human cells, the transgene was both maintained as an episome and expressed stably for six months in rapidly dividing cell cultures. The results demonstrate for the first time that gene expression from an episomal genomic transgene can correct a cell culture disease phenotype for a prolonged period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: (A) Vector map.
Figure 2: (A and B) Enzymatic activity of HPRT in HP10 transformants.
Figure 3: Fluorescent in situ hybridization analysis.

Similar content being viewed by others

References

  1. Manson, A.L. et al. Complementation of null CF mice with a human CFTR YAC transgene . EMBO J. 16, 4238–4249 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schedl, A. et al. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell 86, 71– 82 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Schiedner, G. et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat. Genet. 18, 180–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Wade-Martins, R., Frampton, J. & James, M.R. Long-term stability of large insert genomic DNA episomal shuttle vectors in human cells. Nucleic Acids Res. 27, 1674–1682 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, Q., Harju, S. & Peterson, K.R. Locus control regions—coming of age at a decade plus. Trends Genet. 15, 403– 408 (1999).

    Article  PubMed  Google Scholar 

  7. Yang, X.W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15, 859– 865 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, X.W., Wynder, C., Doughty, M.L. & Heintz, N. BAC-mediated gene-dosage analysis reveals a role for Zipro1 (Ru49/Zfp38) in progenitor cell proliferation in cerebellum and skin. Nat. Genet. 22, 327–335 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  9. Antoch, M.P. et al. Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell 89, 655– 667 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wohlgemuth, J.G., Kang, S.H., Bulboaca, G.H., Nawotka, K.A. & Calos, M.P. Long-term gene expression from autonomously replicating vectors in mammalian cells. Gene Ther. 3, 503–512 ( 1996).

    CAS  PubMed  Google Scholar 

  11. Simpson, K., McGuigan, A. & Huxley, C. Stable episomal maintenance of yeast artificial chromosomes in human cells. Mol. Cell. Biol. 16, 5117 –5126 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calos, M.P. The potential of extrachromosomal replicating vectors for gene therapy. Trends Genet. 12, 463–466 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Caskey, C.T. & Kruh, G.D. The HPRT locus. Cell 16, 1–9 ( 1979).

    Article  CAS  PubMed  Google Scholar 

  14. Hart, S.L. et al. Lipid-mediated enhancement of transfection by a nonviral integrin targeting vector. Hum. Gene Ther. 9, 575– 585 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Gardella, T., Medveczky, P., Sairenji, T. & Mulder, C. Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. J. Virol. 50, 248 –254 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Edwards, A., Hammond, H.A., Jin, L., Caskey, T.C. & Chakraborty, R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12, 241–253 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  17. Delecluse, H.J., Bartnizke, S., Hammershmidt, W., Bullerdiek, J. & Bornkamm, G.W. Episomal and integrated copies of Epstein–Barr virus coexist in Burkitt Lymphoma cell lines. J. Virol. 67, 1292– 1299 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Narayanan, K., Williamson, R., Zhang, Y., Stewart, A.F. & Ioannou, P.A. Efficient and precise engineering of a 200 kb β-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system . Gene Ther. 6, 442–447 . (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Banerjee, S., Livanos, E. & Vos, J.-M.H. Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transformng infectious Epstein–Barr virus. Nat. Med. 1, 1303–1308 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  20. Hammerschmidt, W. & Sugden, B. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein–Barr virus. Cell 55, 427– 433 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Wilson, J.B., Bell, J.L. & Levine, A.J. Expression of Epstein–Barr virus nuclear antigen-1 induces neoplasia in transgenic mice. EMBO J. 15, 3117–3126 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glaser, V. IBM joins SNP consortium. Nat. Biotechnol. 18, 245 (2000).

    Article  Google Scholar 

  23. Yates, J.L., Warren, N. & Sugden, B. Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 313, 812–815 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Melton, D.W., McEwan, C., McKie, A.B. & Reid, A.M. Expression of the mouse HPRT gene: deletional analysis of the promoter region of an X-chromosome linked housekeeping gene. Cell 44, 319– 328 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Yee, J.K. et al. Epitope insertion into the human hypoxanthine phosphoribosyltransferase protein and detection of the mutant protein by an anti-peptide antibody. Gene 53, 97–104 ( 1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs José Mejía and Zoia Larin for providing and analyzing PAC71G04, Dr. Jon Frampton for sharing his flow cytometery expertise, and Dr. Steve Hart for his assistance with the LID complex transfection. We thank the Wellcome Trust for support. R.W-M. is a Wellcome Trust Prize Fellow; H.K. is supported by the E.P. Abraham Trust and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard Wade-Martins or Michael R. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade-Martins, R., White, R., Kimura, H. et al. Stable correction of a genetic deficiency in human cells by an episome carrying a 115 kb genomic transgene. Nat Biotechnol 18, 1311–1314 (2000). https://doi.org/10.1038/82444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82444

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing