Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Phytase-containing Transgenic Seeds as a Novel Feed Additive for Improved Phosphorus Utilization

Abstract

Phytate is the main storage form of phosphorus in many plant seeds, but bound in this form it is a poor nutrient for monogastric animals. Its availability can be significantly increased by addition of the enzyme phytase, which releases phosphate from the substrate, phytate. We have engineered a phytase from Aspergillus niger in tobacco seeds, providing a stable and convenient packaging of the enzyme that is directly applicable in animal feed. The enzyme was expressed as 1 percent of the soluble protein in mature seeds. In in vitro tests that simulated chicken crop and stomach conditions, release of phosphate from feed by addition of transgenic seeds was demonstrated. Supplementation of broiler diets with transgenic seeds resulted in an unproved growth rate, comparable to diets supplemented with fungal phytase or phosphorus. Addition of phytase-transgenic seeds to animal feed thus obviates the need for inorganic phosphorus supplementation, and is environmentally desirable because of the reduced excretion of phosphorus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pen, J., Molendijk, L., Quax, W.J., Sijmons, P.C., van Ooyen, A.J.J., van den Elzen, P.J.M., Rietveld, K. and Hoekema, A. 1992. Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Bio/Technology 10: 292–296.

    CAS  Google Scholar 

  2. Pen, J., van Ooyen, A.J.J., van den Elzen, P.J.M., Quax, W.J. and Hoekema, A. 1993. Efficient production of active industrial enzymes in plants. Ind. Crops Prod. 1: 241–250.

    Article  Google Scholar 

  3. Cowan, D. 1992. Advances in feed enzyme technology. Agro-food-Ind. Hi-Tech. May/June9–ll.

  4. Gibson, D.M. and Lilian, A.B.J. 1990. Phytases and their action on phytic acid, p. 77–92. In: Inositol Metabolism in Plants. Morré, D.J., Boss, W.F. and Loewus, F.A. (Eds.). Wiley-Liss, New York.

    Google Scholar 

  5. Beudeker, R.F., Geerse, C. and Verschoor, G.J. 1991. Biotechnological products for the compound feed industry, p. 340–343. In: Biotechnology International. North, K. (Ed.). Century Press, London.

    Google Scholar 

  6. Lott, J.N.A. 1984. Accumulation of seed reserves of phosphorus and other minerals, p. 139–166. In: Seed Physiology, Vol. 1. Murray, D.R. (Ed.). Academic Press, Sydney.

    Google Scholar 

  7. Simons, P.C.M., Versteegh, H.A.J., Jongbloed, A.W., Kemme, P.A., Slump, P., Bos, K.D., Wolters, M.G.E., Beudeker, R.F. and Verschoor, G.J. 1990. Improved phosphorus availability by microbiai phytase in broilers and pigs. Brit. J. Nutr. 64: 525–540.

    Article  CAS  PubMed  Google Scholar 

  8. Nasi, M. 1990. Microbiai phytase supplementation for improving availability of plant phosphorus in the diet of growing pigs. J. Agr. Sci. Finland 62: 435–442.

    CAS  Google Scholar 

  9. Vogt, H. 1992. Einsatz von Phytase im Broilermastfutter mit unterschiedlichem Phosphorgehalt. Arch. Geflük. 56: 93–98.

    CAS  Google Scholar 

  10. von Pallauf, J., Höhler, D., Rimbach, G. and Neusser, H. 1992. Einfluβ einer Zulage an mikrobieller Phytase zu einer Mais-Spja-Diät auf die scheinbare Absorption von Phosphor und Calcium beim Ferkel. J. Anim. Physiol. a. Anim. Nutr. 67: 30–40.

    Article  Google Scholar 

  11. van Hartingsveldt, W., van Zeijl, C.M.J., Harteveld, G.M., Gouka, R.J., Suykerbuyk, M.E.G., Luiten, R.G.M., van Paridon, P.A., Selten, G.C.M., Veenstra, A.E., van Gorcom, R.F.M. and van Hondel, C.A.M.J.J. 1993. Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene In press

    Google Scholar 

  12. Cornelissen, B.J.C., Hooftvan Huijsduijnen, R.A.M. and Bol, J.F. 1986. A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 321: 531–532.

    Article  CAS  PubMed  Google Scholar 

  13. Sijmons, P.C., Dekker, B.M.M., Schrammeijer, B., Verwoerd, T.C., van den Elzen, P.J.M. and Hoekema, A. 1990. Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8: 217–221.

    CAS  Google Scholar 

  14. Zhu, X.S., Seib, P.A., Alice, G.L. and Liang, Y.T. 1990. Preparation of a low-phytate feed mixture and its bioavailability to chicks. Animal Feed Sci. Techn. 27: 341–351.

    Article  CAS  Google Scholar 

  15. Sandberg, A.-S. and Svanberg, U. 1991. Phytate hydrolysis by phytase in cereals; effects on in vitro estimation of iron availability. J. Food Sci. 56: 1330–1333.

    Article  CAS  Google Scholar 

  16. Caransa, A., Sirnell, M., Lehmussari, A., Vaara, M. and Vaara, T. 1988. A novel enzyme application of corn wet milling. Starch/Stärke 40: S409–411.

    Article  Google Scholar 

  17. Guilley, H., Dudley, R.K., Jonard, G., Balasz, E. and Richards, K.E. 1982. Transcription of Cauliflower Mosaic Virus DNA: detection of promoter sequences and characterization of transcripts. Cell 30: 763–773.

    Article  CAS  PubMed  Google Scholar 

  18. Brederode, F.T., Koper-Zwarthoff, E.C. and Bol, J.F. 1980. Complete nucleotide sequence of alfalfa mosaic virus RNA4. Nucl. Acids Res. 8: 2213–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pen, J., Hoekema, A., Sijmons, P.C., van Ooyen, A.J.J., Rietveld, K. and Verwoerd, T.C. 1991. The expression of phytase in plants. E.P.A. 0449375A2.

    Google Scholar 

  20. Ditta, G., Stanfield, S., Corbiu, D. and Helinski, D. 1980. Broad host range DNA cloning system for gram-negative bacteria: construction of a genebank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 77: 7347–7351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  22. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    Article  CAS  Google Scholar 

  23. Bradford, M.M. 1976. A rapid and sensitive method for the quantisation of miaogram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  24. Edge, A.S.B., Faltynek, C.R., Hof, L., Reichert, L.E. Jr and Weber, P. 1981. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal. Biochem. 118: 131–137.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pen, J., Verwoerd, T., van Paridon, P. et al. Phytase-containing Transgenic Seeds as a Novel Feed Additive for Improved Phosphorus Utilization. Nat Biotechnol 11, 811–814 (1993). https://doi.org/10.1038/nbt0793-811

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0793-811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing