Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

δ-(L-α-Aminoadipyl)-L-Cysteinyl-D-Valine Synthetase, the Multienzyme Integrating the Four Primary Reactions in β-Lactam Biosynthesis, as a Model Peptide Synthetase

Abstract

ACV Synthetase forms the tripeptide precursor of penicillins and cephalosporins from α-aminoadipate, cysteine, and valine. Catalytic sites for substrate carboxyl activation as adenylates, peptide bond formations, epimerization and release of the tripeptide-thioester are integrated in multifunctional enzymes of 405 to 425 kD. These have been characterized from several pro- and eukaryotic β-Iactam producers. Implications of these results for the thio-template mechanism of peptide formation are discussed, as well as the use of this multienzyme as a model system for enzymatic peptide synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Arnstein, H.R.V. and Morris, D. 1960. The structure of a peptide containing α-aminoadipic acid, cysteine and valine, present in the mycelium of Penicillium chrysogenum. Biochem. J. 76: 357–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adriaens, P., Meesschaert, B., Wuyts, W., Vanderhaeghe, H. and Eyssen, H. 1975. Presence of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine in fermentations of Penicillium chrysogenum. Antimicrob. Agents Chemother. 8: 638–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chan, J.A., Huang, F.-C. and Sih, C.J. 1976. The absolute configuration of the amino acids in δ-(L-α-aminoadipyl)-cysteinyl-valine from Penicillium chrysogenum. Biochemistry 15: 177–180.

    Article  CAS  PubMed  Google Scholar 

  4. Bauer, K. 1970. Zur Biosynthese der Penicilline. Bildung von 5-(2-Amino-adipyl)-cysteinyl-valin in Extracten von Penicillium chrysogenum. Z. Natur-forsch. B25: 1125–1129.

    Article  Google Scholar 

  5. Lara, F., Mateos, R.C., Vazquez, G. and Sanchez, S. 1982. Induction of penicillin biosynthesis by L-glutamate in Penicillium chrysogenum. Biochem. Biophys. Res. Comm. 105: 172–178.

    Article  CAS  PubMed  Google Scholar 

  6. Loder, P.B. and Abraham, E.P. 1971. Biosynthesis of peptides containing α-aminoadipic acid and cysteine in extracts of a Cephalosporium sp. Biochem. J. 123: 477–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fawcett, P.A., Usher, J.J. and Abraham, E.P. 1976. Aspects of cepalosporin and penicillin biosynthesis, p. 129–138. In: Second International Symposium on the Genetics of Industrial Microorganisms. MacDonald, K. D. (Ed. ). Academic Press, New York.

    Google Scholar 

  8. Fawcett, P.A., Usher, J.J., Huddleston, J.A., Bleaney, R.C., Nisbett, J.J. and Abraham, E.P. 1976. Synthesis of δ-(α-aminoadipyl)cysteinyl-valine and its role in penicillin biosynthesis. Biochem. J. 157: 651–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Enriquez, L.A. and Pisano, M.A. 1979. Isolation and nature of intracellular α-aminoadipic acid containing peptides from Paecilomyces persinicus P-10. Antimicrob. Agents Chemother. 16: 392–397.

    Article  Google Scholar 

  10. Shirafuji, H., Fujisawa, Y., Kida, M., Kanzaki, T. and Yoneda, M. 1979. Accumulation of tripeptide derivatives by mutants of Cephalosporium acremonium. Agric. Biol. Chem. 43: 155–160.

    CAS  Google Scholar 

  11. Ramsden, M., McQuade, B.A., Saunders, K., Turner, M.K. and Harford, S. 1990. Characterization of a loss-of-function mutation in the isopenicillin N synthetase gene of Acremonium chrysogenum. Gene 85: 267–273.

    Article  Google Scholar 

  12. Abraham, E.P. 1977. β-Lactam antibiotics and related substances. Japan. J. Antibiot. 30: 1–26.

    Article  CAS  Google Scholar 

  13. Adlington, R.L., Baldwin, J.E., Lopez-Nieto, M., Murphy, J.A. and Patel, N. 1983. A study of the biosynthesis of the tripeptide δ-(α-L-aminoadipyl)-L-cysteinyl-D-valine in a β-lactam-negative mutant of Cephalosporium acremonium. Biochem. J. 213: 573–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hersbach, G.J.M., van der Beek C.P. and van Dijk, P.W.M. 1984. The penicillins: properties, biosynthesis and fermentation, p. 45–140. In: Biotechnology of Industrial Antibiotics, Vandamme, E. J. (Ed. ). Marcel Dekker, New York.

    Google Scholar 

  15. Kaszab, E. and Enfors, S.O. 1981. The γ-glutamyl-cysteine synthetase: a possible connecting point of primary and secondary metabolism of P. chrysogenum. Abstracts 2nd European Congress of Biotechnology, Society of Chemical Industry, London, p. 77.

  16. Nüesch, J., Heim, J. and Treichler, H.-J. 1987. The biosynthesis of sulfur-containing β-lactam antibiotics. Ann. Rev. Microbiol. 41: 51–75.

    Article  Google Scholar 

  17. Banko, G., Demain, A.L. and Wolfe, S. 1987. δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase): a multifunctional enzyme with broad substrate specificity for the synthesis of penicillin and cephalosporin precursors. J. Am. Chem. Soc. 109: 2858–2860.

    Article  CAS  Google Scholar 

  18. Jensen, S.E., Westlake, D.W.S. and Wolfe, S. 1988. Production of the penicillin precursor δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine (ACV) by cell-free extracts from Streptomyces clavuligerus. FEMS Microbiol. Lett. 49: 213–218.

    CAS  Google Scholar 

  19. van Liempt, H., von Doehren, H. and Kleinkauf, H. 1989. δ-(L-α-Amino-adipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. The first enzyme in penicillin biosynthesis is a multifunctional peptide synthetase. J. Biol. Chem. 264: 3680–3684.

    CAS  PubMed  Google Scholar 

  20. Jensen, S.E., Wong, A., Rollins, M.J. and Westlake, D.W.S. 1990. Purification and partial characterization of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase from Streptomyces clavuligerus. J. Bacteriol. 172: 7269–7271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baldwin, J.E., Bird, J.W., Field, R.A., O'Callaghan, N.M. and Schofield, C.J. 1990. Isolation and partial characterization of ACV synthetase from Cephalosporium acremonium and Streptomaces clavuligerus. J. Antibiotics 43: 1055–1057.

    Article  CAS  Google Scholar 

  22. Baldwin, J.E., Bird, J.W., Field, R.A., O'Callaghan, N.M., Schofield, C.J. and Willis, A.C. 1991. Isolation and partial characterization of ACV synthetase from Cephalosporium acremonium and Streptomaces clavuligerus: evidence for the presence of phosphopantothenate in ACV synthetase. J. Antibiotics 44: 241–248.

    Article  CAS  Google Scholar 

  23. Zhang, J. and Demain, A.L. 1990. Purification from Cephalosporium acremonium of the initial enzyme unique to the biosynthesis of penicillins and cephalo-sporins. Biochem. Biophys. Res. Comm. 169: 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  24. Diez, B., Gutiérrez, S., Barredo, J.L., van Solingen, P., van der Voort, L.H.M. and Martin, J.F. 1990. The cluster of penicillin biosynthetic genes: identification and characterization of the pchAB gene encoding the α-Aminoadipyl)-L-cysteinyl-D-valine synthetase and linkage to the pcbC and penDE genes. J. Biol. Chem. 265: 16358–16365.

    CAS  PubMed  Google Scholar 

  25. Smith, D.J., Earl, A.J. and Turner, G. 1990. The multifunctional peptide synthetase performing the first step in penicillin biosynthesis in Penicillium chrysogenum is a 421,037 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J. 9: 2743–2750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. MacCabe, A.P., van Liempt, H., Palissa, H., Unkles, S., Riach, M.B.R., Pfeifer, E., von Döhren, H. and Kinghorn, J.R. 1991. δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergilluis nidulans: molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway. J. Biol. Chem. 266: 12646–12654.

    CAS  PubMed  Google Scholar 

  27. Gutiérrez, S., Díez, B., Montegnegro, E. and Martin, J.F. 1991. Characterization of the Cephalosporium acremonium pcbAB gene encoding a-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J. Bacteriol. 173: 2354–2365.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Coque, J.J.R., Martin, J.F., Calzada, F.G. and Liras, P. 1991. The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbB of Nocardia lactamdurans are clustered together in organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum. Mol. Microbiol. 5: 1125–1133.

    Article  CAS  PubMed  Google Scholar 

  29. Kimura, H. 1989. Jap. Patent. 2-291274

  30. Turgay, K., Krause, M. and Marahiel, M.A. 1992. Four homolgous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate forming enzymes. Mol. Microbiol. 6: 529–546.

    Article  CAS  PubMed  Google Scholar 

  31. Müller, W.H., van der Krift, T.P., Krouwer, A.J.J., Wösten, H.A.B., van der Voort, L.H.M., Smaal, E.B. and Verkleij, A.J. 1991. Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J. 10: 489–495.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lendenfeld, T., Grali, D., Wolschek, M., Kubicek-Pranz, E.V. and Kubicek, C.P. 1993. Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. J. Biol. Chem. 268: 665–671.

    CAS  PubMed  Google Scholar 

  33. Kleinkauf, H. and von Döhren, H. 1990. Biosynthesis of peptide antibiotics. Eur. J. Biochem. 192: 1–15.

    Article  CAS  PubMed  Google Scholar 

  34. Schwecke, T., Aharonowitz Y., Palissa, H., von Döhren, H., Kleinkauf, H. and van Liempt, H. 1992. Enzymatic characterization of the multifunctional enzyme δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase from Streptomyces clavuligerus. Eur. J. Biochem. 205: 687–694.

    Article  CAS  PubMed  Google Scholar 

  35. van Liempt, H. 1988. Untersuchungen zur Biosynthese der beta-Lactam-Vorstufe δ-(L-α-Aminoadipyl)-L-Cysteinyl-D-Valin. Thesis, TU Berlin.

  36. Bergmeyer, J. 1976. Lecture delivered at the TU Berlin.

  37. Stindl, A. 1993. Biosynthese von Actinomycin. Thesis, Tu, Berlin.

  38. McCabe, A., Riach, M.B.R. and Kinghorn, J.R. 1989. The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J. 9: 279–287.

    Article  Google Scholar 

  39. Smith, D.J., Burnham, M.K.R., Edwards, J., Earl, A.J. and Turner, G. 1990. Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Pencillium chrysogenum. Bio/Technology 8: 39–41.

    CAS  Google Scholar 

  40. Smith, D.J., Burnham, M.K.R., Bull, J.H., Hodgson, J.E., Ward, J.M., Brownw, P., Brown, J., Barton, B., Earl, A.J. and Turner, G. 1990. β-Lactam antibiotic biosynthetic genes have been conserved in clusters in procaryotes and eucaryotes. EMBO J. 9: 741–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tobin, M.B., Kovacevic, S., Madduri, K., Hoskins, J.A., Skatrud, P.L., Vining, L.C., Stuttard, C. and Miller, J.R. 1990. Localization of the lysine ε-aminotransferase (lat) and δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (pcbAB) genes from Streptomyces clavuligerus. Production of LAT activity in Escherichia coli. J. Med. Chem. 33: 2321–2323.

    Article  Google Scholar 

  42. Montenegro, E., Barredo, J.L., Gutiérrez, S., Díez, B., Alvarez, E. and Martín, J.F. 1990. Cloning, characterization of the acyl-CoA:6-amino penicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthase gene. Mol. Gen. Genet. 221: 322–330.

    Article  CAS  PubMed  Google Scholar 

  43. Hoskins, J.A., O'Callaghan, N., Queener, S.W., Cantwell, C.A., Wood, J.S., Chen, V.J. and Skatrud, P.L. 1990. Gene distruption of the pcbAB gene encoding ACV synthetase in Cephalosporium acremonium. Curr. Genet. 18: 523–530.

    Article  CAS  PubMed  Google Scholar 

  44. Cortes, J., Haydock, S.F., Roberts, G.A., Bevitt, D.J. and Leadlay, P.F. 1990. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348: 176–178.

    Article  CAS  PubMed  Google Scholar 

  45. Beck, J., Ripka, S., Siegner, A., Schiltz, E. and Schweizer, E. 1990. The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum, its gene structure relative to that of other polyketide synthases. Eur. J. Biochem. 192: 487–498.

    Article  CAS  PubMed  Google Scholar 

  46. Donadio, S., Staver, M.J., McAlpine, J.B., Swanson, S.J. and Katz, L. 1991. Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675–679.

    Article  CAS  PubMed  Google Scholar 

  47. Bairoch, A., Swiss Protein data bank. An updated version can be obtained from the corresponding author.

  48. Skarpeid, H.-J., Zimmer, T.-L., Shen, B. and von Dohren, H. 1990. The proline-activating activity of the multienzyme gramicidin S synthetase 2 can be recovered on a 115-kDa tryptic fragment. Eur. J. Biochem. 187: 627–633.

    Article  CAS  PubMed  Google Scholar 

  49. Kurotsu T., Hori, K., Kanda, M. and Saito, Y. 1991. Characterization and location of the L-proline activating fragment from the multifunctional gramicidin S synthetase 2. J. Biochem. 109: 763–769.

    Article  CAS  PubMed  Google Scholar 

  50. Schlumbohm, W., Stein, T., Ullrich, C., Vater, J., Krause, M., Marahiel, M.A., Kruft, V. and Wittmann-Liebold, B. 1992. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J. Biol. Chem. 266: 23135–23141.

    Google Scholar 

  51. Caffrey, P., Green, B., Packman, L.C., Rawlings, B.J., Staunton, J. and Leadlay, P.F. 1991. An acyl-carrier-protein-thioesterase domain from the 6-deoxyerythronolide B synthase of Saccharopolyspora erythraea Eur. J. Biochem. 195: 823–830.

    Article  CAS  PubMed  Google Scholar 

  52. Kleinkauf, H., van Liempt, H., Palissa, H. and von Döhren, H. 1992. Biosynthese von Peptiden: Bin nichtribosomales System. Naturwissenschaften 79: 153–162.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharonowitz, Y., Bergmeyer, J., Cantoral, J. et al. δ-(L-α-Aminoadipyl)-L-Cysteinyl-D-Valine Synthetase, the Multienzyme Integrating the Four Primary Reactions in β-Lactam Biosynthesis, as a Model Peptide Synthetase. Nat Biotechnol 11, 807–810 (1993). https://doi.org/10.1038/nbt0793-807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0793-807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing