Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A sensitive transgenic plant system to detect toxic inorganic compounds in the environment

Abstract

We describe a transgenic plant–based assay to study the genetic effects of heavy metals. Arabidopsis thaliana plants carrying a β-glucuronidase (GUS) marker gene either with a point mutation or as a recombination substrate were used to analyze the frequency of somatic point mutations and homologous recombination in whole plants. Transgenic test plants sown on media contaminated by the salts of the heavy metals Cd2+, Pb2+, Ni2+, Zn2+, Cu2+, and As2O3 exhibited a pronounced uptake-dependent increase in the frequencies of both somatic intrachromosomal recombination and point mutation. The test was applied to monitor the genotoxicity of soils sampled in sites contaminated with several heavy metals. Our results indicate that this is a highly sensitive system for monitoring metal contamination in soils and water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Point mutation and recombination assays.
Figure 2: Mutation frequencies in lines 166 and 166A exposed to heavy metals.
Figure 3: Homologous recombination frequency in line 651 exposed to heavy metals.
Figure 4: Uptake of metals by plants as a function of metal concentration in the media.

Similar content being viewed by others

References

  1. Thiele, D. Metal-regulated transcription in eukaryotes. Nucleic Acids Res. 20, 1183–1191 (1992).

    Article  CAS  Google Scholar 

  2. Horn, N. Copper metabolism in Menke's disease. In Metabolism of trace metals in man, Vol. 2. (eds Rennert, O.M. & Chan W.-Y.) 26–52 (CRC Press, Boca Raton, FL; 1984).

    Google Scholar 

  3. Alloway, B.J. & Ayres, D.C. Chemical principles of environmental pollution. (Chapman and Hall, London; 1993).

    Book  Google Scholar 

  4. Knasmüller, S. et al. Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat. Res. 420, 37–48 (1998).

    Article  Google Scholar 

  5. Hartwig, A. Current aspects in metal genotoxicity. BioMetals 8, 3–11 (1995).

    Article  CAS  Google Scholar 

  6. Schaaper, R.M. & Dunn, R.L. Spontaneous mutation in the Escherichia coli lacI gene. Genetics 129, 317–326 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lewin, D.E. & Ames, B.N. Classifying mutagens as to their specificity in causing the six possible transitions and transversions: a simple analysis using the Salmonella mutagenicity assay. Environ. Mutagen. 8, 9–28 (1986).

    Article  Google Scholar 

  8. Rossman, T.G. et al. Performance of 133 compounds in the lambda prophage induction endpoint of the Microscreen assay and a comparison with S. typhimurium mutagenicity and rodent carcinogenicity assays. Mutat. Res. 260, 349–367 (1991).

    Article  CAS  Google Scholar 

  9. Hartmann, A. & Speit, G. Comparative investigations of the genotoxic effects of metals in the single cell gell (SCG) assay and the sister chromatid exchange (SCE) test. Environ. Mol. Mutagen. 23, 299–305 (1994).

    Article  CAS  Google Scholar 

  10. Siviková, K., Dianovsky, J. Sister chromatid exchanges after exposure to metal-containing emissions. Mutat. Res. 327, 17–22 (1995).

    Article  Google Scholar 

  11. Rasmuson, A. Mutagenic effects of some water-soluble metal compounds in a somatic eye-color test system in Drosophila melanogaster. Mutat. Res. 157, 157–162 (1985).

    Article  CAS  Google Scholar 

  12. Sacco, M.G. et al. A transgenic mouse model for the detection of cellular stress induced by toxic inorganic compounds. Nat. Biotechnol. 15, 1392–1397 (1997).

    Article  CAS  Google Scholar 

  13. Mayer, C., Klein, R.G., Wesch, H. & Schmezer, P. Nickel subsulfide is genotoxic in vitro but shows no mutagenic potential in respiratory tract tissues of BigBlue rats and Muta Mouse mice in vivo after inhalation. Mutat. Res. 420, 85–98 (1998).

    Article  CAS  Google Scholar 

  14. Rossman, T.G. Metal mutagenesis. In Toxicology of metals. (eds Goyer R.A. & Cherian, G.C.) 373–403 (Springer-Verlag, New York, NY; 1995).

    Chapter  Google Scholar 

  15. Steinkellner, H. et al. Genotoxic effects of heavy metals: comparative investigation with plant bioassays. Environ. Mol. Mutagen. 31, 183–191 (1998).

    Article  CAS  Google Scholar 

  16. Grant, W.F. Higher plant assays for the detection of chromosomal aberrations and gene mutations-a brief historical background on their use for screening and monitoring environmental chemicals. Mutat. Res. 426, 107–112 (1999).

    Article  CAS  Google Scholar 

  17. Fiskesjö, G. The Allium test—an alternative in environmental studies: the relative toxicity of metal ions. Mutat. Res. 197, 243–260 (1988).

    Article  Google Scholar 

  18. Puchta, H., Swoboda, P. & Hohn, B. Induction of homologous DNA recombination in whole plants. Plant J. 7, 203–210 (1995).

    Article  CAS  Google Scholar 

  19. Kovalchuk, I., Kovalchuk, O., Arkhipov, A. & Hohn, B. Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident. Nat. Biotechnol. 16, 1054–1059 (1998).

    Article  CAS  Google Scholar 

  20. Kovalchuk, I., Kovalchuk, O. & Hohn, B. Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J. 19, 4431–4438 (2000).

    Article  CAS  Google Scholar 

  21. Swoboda, P., Gal., S., Hohn, B. & Puchta, H. Intrachromosomal homologous recombination in whole plants. EMBO J. 13, 484–489 (1994).

    Article  CAS  Google Scholar 

  22. Peterhans, A., Schlupmann, H., Basse, C. & Paszkowski, J. Intrachromosomal recombination in plants. EMBO J. 9, 3437–3445 (1990).

    Article  CAS  Google Scholar 

  23. Masson, J.E., Paszkowski, J. Arabidopsis thaliana mutants altered in homologous recombination. Proc. Natl. Acad. Sci. USA 94, 11731–11735 (1997).

    Article  CAS  Google Scholar 

  24. Imlay, J.A. & Linn, S. DNA damage and oxygen radical toxicity. Science 240, 1302–1309 (1988).

    Article  CAS  Google Scholar 

  25. Lee, Y.-W., Broday, L. & Costa, M. Effects of nickel on DNA methyltransferase activity levels and genomic DNA methylation. Mutat. Res. 415, 213–218 (1998).

    Article  CAS  Google Scholar 

  26. Mass, M.J. & Wang, L. Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat. Res. 386, 263–277 (1997).

    Article  CAS  Google Scholar 

  27. Rank, J. & Nielsen, M.N. Evaluation of the Allium cepa anaphase–telophase test in relation to genotoxicity screening of industrial wastewater. Mutat. Res. 312, 17–24 (1994).

    Article  CAS  Google Scholar 

  28. Bitton, G. & Koopman, B. Bacterial and enzymatic bioassays for toxicity testing in the environment. Rev. Environ. Contam. Toxicol. 125, 1–22 (1992).

    CAS  PubMed  Google Scholar 

  29. Bitton, G., Jung, K. & Koopman, B. Evaluation of a microplate assay specific for heavy metal toxicity. Arch. Environ. Contam. Toxicol. 27, 25–28 (1994).

    Article  CAS  Google Scholar 

  30. Codina, J.C., Perez-Garcia, A., Romero, R & de Vincente, A. A comparison of microbial bioassays for the detection of metal toxicity. Arch. Environ. Contam. Toxicol. 25, 250–254 (1993).

    Article  CAS  Google Scholar 

  31. Helleday, T., Nilsson, R. & Jenssen, D. Arsenic [III] and heavy metal ions induce intrachromosomal homologous recombination in the hprt gene of V79 Chinese hamster cells. Environ. Mol. Mutagen. 35, 114–122 (2000).

    Article  CAS  Google Scholar 

  32. Kong, I.-C., Bitton, G., Koopman, B. & Jung, K.-H. Heavy metal toxicity testing in environmental samples. Rev. Environ. Contam. Toxicol. 125, 1–22 (1995).

    Google Scholar 

  33. Dmitriev, M.T., Kaznina, N.I., & Piniginina, I.A. Sanitary chemical analysis of the pollutants in the environment. (Khimiya, Moscow, USSR; 1989).

    Google Scholar 

  34. Jefferson, R.A., Bevan, M. & Kavanagh, T. The use of the Escherichia coli beta-glucuronidase as a gene fusion marker for studies of gene expression in higher plants. Biochem. Soc. Trans. 15, 17–18 (1987).

    Article  CAS  Google Scholar 

  35. Sokal, R. & Rohlf, F. Biometry. (W.H. Freeman and Company, New York, NY; 1995).

    Google Scholar 

Download references

Acknowledgements

We want to thank H. Rothnie, M. Pugin, L. Valentine, and Karin Wiebauer for critical reading of the manuscript. We wish to acknowledge an EMBO long-term fellowship to I.K., and we thank the Novartis Research Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kovalchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalchuk, O., Titov, V., Hohn, B. et al. A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nat Biotechnol 19, 568–572 (2001). https://doi.org/10.1038/89327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing