Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape–Agrobacterium interactions

Abstract

Very short exposures of embryogenic calli of Vitis vinifera cv. Superior Seedless grape plants to diluted cultures of Agrobacterium resulted in plant tissue necrosis and subsequent cell death. Antibiotics used for Agrobacterium elimination or as plant selectable markers were not responsible for this necrotic response. Rather, cell death seemed to be oxygen-dependent and correlated with elevated levels of peroxides. Therefore, we studied the effects on necrosis of various combinations of antioxidants during and after grape-Agrobacterium cocultivation. The combination of polyvinylpolypyrrolidone and dithiothreitol was found to improve plant viability. Tissue necrosis was completely inhibited by these antioxidants while Agrobacterium virulence was not effected. These treatments enabled the recovery of stable transgenic grape plants resistant to hygromycin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barbault, T.J., Skene, K.G., Cain, P.A. and Scott, N.S. 1990. Genetic transformation of grapevine cells. J. Exp. Bot. 41: 1045–1049.

    Article  Google Scholar 

  2. Berres, R., Otten, L., Tinland, B., Malgarini-Clog, E. and Walter, B. 1992. Transformation of Vitis tissue by different strains of Agrobacterium tumefaciens containing the T-6B gene. Plant Cell Rep. 11: 192–195.

    Article  CAS  Google Scholar 

  3. Guellec, V., David, C., Branchard, M. and Tempe, J. 1990. Agrobacterium rhizogenes mediated transformation of grapevine (Vitis vinifera L.). Plant Cell Tissue and Organ Culture. 20: 211–215.

    CAS  Google Scholar 

  4. Mullins, M.G., Tang, F.C.A. and Facciotti, D. 1990. Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Bio/Technology 8: 1041–1045.

    CAS  Google Scholar 

  5. Le Gall, O., Torregrosa, L., Danglot, Y., Candresse, T. and Bouquet, A. 1994. Agrabacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Sci. 102: 161–170.

    Article  CAS  Google Scholar 

  6. Walter, B. 1994. Aspects botanique et genetique de l'application des nouvelles techniques de biologie moleculaire d'informatique et de biotechnologies (transfert de genes) à la vigne,in The 74th General Assembly of the International Vine Office (O.I.V), Paris, France. Moët-Hennessy (ed.). pp. 1–43.

    Google Scholar 

  7. Martinelli, L. and Mandoline, G. 1994. Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theor. Appl. Genet. 88: 621–628.

    Article  CAS  Google Scholar 

  8. Gray, D.J. and Meredith, C.P. 1992. The grape, in Biotechnology in Agriculture, No. 8. Biotechnology of Perennial Fruit Crops. Hammerschlagm, F. and Litz, R.E. (eds.). CAB International, Wallingford. pp. 229–264.

    Google Scholar 

  9. Kikkert, J.R., Hebert-Soule, D., Wallace, P. and Reisch, B.I. 1995. Transgenic plantlets of ‘Chencellor’ grapevine (Vitis sp.) from biolistic transformation of embryo-genie cell suspension. Plant Cell Rep. In press

  10. Colby, S.M., Juncosa, A.M. and Meredith, C.P. 1991. Cellular differences in Agrobacterium susceptibility and regeneration capacity restrict the development of transgenic grapevines. J. Amer. Soc. Hort. Sci. 116: 356–361.

    Google Scholar 

  11. Perl, A., Saad, S., Sahar, N. and Holland, D. 1995. Establishment of long term embryogenic cultures of seedless Vitis vinifera cultivars—a synergistic effect of auxins and the role of abscisic acid. Plant Sci. 104: 193–200.

    Article  CAS  Google Scholar 

  12. Stamp, J.A. and Meredith, C. 1988. Proliferative somatic embryogenesis from zygotic embryos of grapevine. J. Amer. Soc. Hort. Sci. 113: 941–945.

    Google Scholar 

  13. Stamp, J.A. and Meredith, C.P. 1988. Somatic embryogenesis from leaves and anthers of grapevine. Scientia. Hortic. 35: 235–250.

    Article  Google Scholar 

  14. Ream, W. 1989. Agrobacterium tumefaciens and interkingdom genetic exchange. Annual Review of Phytopathology 27: 583–618.

    Article  CAS  Google Scholar 

  15. Yanofsky, M., Lowe, B., Montoya, A., Rubin, R., Krul, W., Gordon, M., and Nester, E. 1985. Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens . Mol. Gene. Gen. 201: 237–246.

    Article  CAS  Google Scholar 

  16. Pu, X.A. and Goodman, R.N. 1992. Induction of necrogenesis by Agrobacterium tumefaciens on grape explants. Physiol. and Mol. Plant Pathol. 41: 241–254.

    Article  CAS  Google Scholar 

  17. Klement, Z. and Goodman, R.N. 1967. The hypersensitive reaction to infection by bacterial plant pathogens. Annal. Review of Phytopathology 5: 17–44.

    Article  Google Scholar 

  18. Thomashow, M.F., Panagopoulos, C.G., Gordon, M.P. and Nester, E.W. 1980. Host range of Agrobacterium tumefaciens is determined by the Ti-plasmid. Nature 283: 794–796.

    Article  Google Scholar 

  19. Robertson, T. 1983. The Organic Consistuent of Higher Plants. 5th ed. Cordus, North Amherst, MA.

    Google Scholar 

  20. Mayer, A.M. and Harel, E. 1979. Polyphenol oxidases in plants. Phytochemistry 18: 193–215.

    Article  CAS  Google Scholar 

  21. Vaugh, K.C. and Duke, S.O. 1984. Function of polyphenol oxidase in higher plants. Physiol. Plant. 60: 106–112.

    Article  Google Scholar 

  22. Lagrimini, L.M. 1992. Wound-induced deposition of polyphenols in transgenic plants over expressing peroxidase. Plant Physiol. 96: 26–31.

    Google Scholar 

  23. Hahlobrock, K. and Scheel, D. 1989. Physiology and molecular biology of phenyl-propanoid metabolism. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 40: 347–369.

    Article  Google Scholar 

  24. Preece, J.E. and Compton, M.E. 1991. Problems with explant exudation in micro-propagation, in Biotechnology in Agriculture and Forestry, High Tech and Micropropagation, Vol. 17, Bajaj, Y.P.S. (ed.). Springer-Verlag, Berlin, Heidelberg. pp. 168–189.

    Google Scholar 

  25. Mathews, H., Litz, R.E., Wilde, H.D., Merkle, S.A. and Wetzstein, H.Y. 1992. Stable integration and expression of β-glucuronidase and NPTII genes in mango somatic embryos. In Vitro Cell Dev. Biol. 28P: 172–178.

    Article  CAS  Google Scholar 

  26. Mathews, H., Litz, R.E., Wilde, H.D. and Wetzstein, H.Y. 1993. Genetic transformation of mango. Acta Horticulture 341: 93–97.

    Article  Google Scholar 

  27. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  28. Perl, A., Shaul, O. and Galili, G. 1993. Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: Two novel selectable markers for plant transformation relying on overproduction of lysine and threonine. Bio/Technology 11: 715–718.

    CAS  Google Scholar 

  29. Becker, D., Kemper, E., Schell, J. and Masterson, R. 1992. New plant binary with selectable markers proximal to the left T-DNA border. Plant Mol. Biol. 20: 1195–1197.

    Article  CAS  Google Scholar 

  30. Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L. and Rocha-Sosa, M. 1990. Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245–250.

    Article  CAS  Google Scholar 

  31. Uoyd, G., McCown, B. 1981. Commercially feasible micrpropagation of Mountain laurel, Kalmia latifolia, by the use of shoot tip culture. Int. Plant Prop. Soc. Proc. 30: 421–427.

    Google Scholar 

  32. Fhance, B. and Maehly, A.C. 1955. Methods in Enzymology, II, Collowick, S.R and Kaplan, N.O. (eds.). Academic Press, New York. pp. 764–775.

    Google Scholar 

  33. Steenkamp, J., Wiid, I., Lourens, A. and Van Helden, P. 1994. Improved method for DNA extraction from Vitis vinifera . Am. J. Enol. Vitic. 45: 102–106.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perl, A., Lotan, O., Abu-Abied, M. et al. Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape–Agrobacterium interactions. Nat Biotechnol 14, 624–628 (1996). https://doi.org/10.1038/nbt0596-624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0596-624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing